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SOME OBSERVATIONS OF MIDDLE LATITUDE FORCED PLANETARY WAVES

1. Introduction

The type of atmospheric disturbances that we want to consider are the zomal
asymmetries which are observed when the state of the atmosphere is averaged over
a period of roughly one month or more. These asymmetries are associated with
(or manifestations of) the well-known fact that two points having the same lati-
tude and the same elevation. above mean sea level,‘but different longitudes, can
have quite different climates. v _ ‘

The fact that the zonal asymmetries on tﬁe mean monthly maps occur at
approximately the same location year after year suggests that they owe their
existence to zonal asymmetries of the lower boundary, such as the presence of
mountain barriers and land-sea thermal contrasts (Saltéman, 1968). TFor that
reason we commonly say that the disturbances are "forced" by the lower boundary.
As we shall see in more detail later, this does not necessarily imply that the
energy associated with these disturbances is maintained against dissipative
forces by a flux of energy through the lower boundary. In the case of disturbances
"forced" by topography, for example, there is no flux of energy through the
earth's surface; there is simply a redistribution of energy from the axisymmetric
to the nonaxisymmetric part of the flow through the action of mountains which

deflect the zonal flow.

2. The Observed Structure
2.1 Mean annual conditions o

To fix ideas, we have in Fig. 1 thé SOO'mb géopotential height averaged over
each day in the period 1965-1967. Naturally the field contains only ultra-large
scale features, the more notable being the troughs on the east coasts of Asia and
North America.
2.2 Average Winter Conditions in the Wave Domain

To obtain more detailed information about the scales of motion present in
time-averaged fields we can perform a Fourier analysis along latitude circles, i.e.,

we can write, for any atmospheric variable Z at a given time to,

Z(A,({),p) = Ao(cp »P) +n£1€An(cp ,p)cos ni + Bn(CF ,p)sin n)\]

A (¢ ,p) +n§ ¢ (¢,p)cos n[A—Yn(cf ,p)]

1
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Fig. 1. The average 500 mb gecpotential height field for
the period 1965-1967, in gdm (After Craddock and Flood, 1969).
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where A, (p,p are the longitude, latitude and pressure respectively, and

2
=L
Ao—ZTrS ZdA
5]
2w

{An,Bn} =‘% S Z{cos ni,sin nA}dr , ' n>l
0
1
C = (A2 + B 2)? = amplitude of wavenumber n
n n n
Yy = l-tan'l(B /A ) = phase of wavenumber n.
n n n''n

Zonal wavenumber 1. This type of analysis has been done by van Loon et al. (1973)

on mean monthly height data for January and July, the two months being treated
separately. For each of these two months an average height distribution waé
obtained by averaging over seven years (1964-1970) in the troposphere and over five
years (1966-1970) in the stratosphere. The Fourier analysis of the resulting mean
monthly maps yielded, for zonal wavenumber 1, the amplitude and phase distribution
shown in Fig. 2. We see that in the troposphere zonal wavenumber 1 has a maximum
amplitude slightiy over 150m at about 50°N, in the upper troposphere. We note the
presence of phase clusters in the troposphere at about 15°N and 72°N, indicating a
vanishing amplitude at those points.

In the lower stratosphere the wave maximum amplitude shifts northward and
reaches a value of about 600m at p = 10 mb (Z = 30 km) and ¢ = 70°N, a fourfold
increase over the value in the upper troposphere. As for the phase, which gives the
position of the ridge, we see that it is such that in the middle latitude the wave
is sloping to the west with height. The tilt is rather pronounced, considering that
at 50°N the 100C mb ridge is located at 60°E whereas at 10 mb it is at 180°, a shift
of 240 degrees to the west. This means that at some intermediate level (50 mwb) the
ridge is vertically above the 1000 mb trough. In the horizontal we find in general
that south of the wave amplitude maximum the phase lines are tilted from the south-
west to the north—east. North of the wave amplitude maximum, at least in those
regions where the amplitude is relatively large, there is a tendency for the wave tc
tilt from the south-east to the north-west. We will return later to a discussion of
these phase tilts, both in the horizontal and the vertical, and show how they are

related to the direction of wave energy propagation.
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To get some idea of the representativeness of the average wave structure of
Fig. 2 we can compare it with that shown in Fig. 3, for January 1958, a month not
included in the data set of Fig. 2. We find again: (a) a relative maximum in
the amplitude in the upper troposphere at 50°N, (b) a shift northward and an
increase in the amplitude up to at least 10 mb (30 km), with roughly a factor 4
difference between the amplitudes at 200 mb and 10 mb, (c) a westward tilt with .
height in middle latitudes, (d) a tendency for the wave, at constant pressure, to
tilt from the south-west to the north-east south of the amplitude maximum and the
opposite tilt further north. The notable difference occurs in the intemsity of the
wave, which is roughly 50% higher in 1958 than during the average of the several
years used to construct Fig. 2. We note also that the phase cluster in the northern
mid troposphere of Fig. 2, which indicates a zero value for the amplitude, probably
resulted from the averaging process; it was not observed in 1958. This is not a
particularly significant feature since the amplitudes in this region are quite small.

It is interesting to compare the stationary wave structure of Fig. 2 with the
mean zonal wind averaged over the period December-February for several years, from
Newell et al. (1972), as seem in Fig. 4. We find that the wave amplitude maximum in
the upper troposphere is about 15 degrees north of the subtropical jet and that with
increasing height in the stratosphere the amplitude maximum tends to coincide with
the zonal wind maximum. As the data set which was used to construct Figs. 2 and 4
do not correspond to the same time period, there can naturally be some question as to
the validity of the above relationship between wave structure and the mean zonal
wind. We can see from Fig. 5, however, that generally the same close relationship
was observed in the lower stratosphere of January 1966. Fig. 5 is from a paper by
‘Hirota and Sato (1969) who, in fact, seem to have been the first to point out this

relationship. In the case of Fig. 5 all data apply to the same time period.

Zonal wavenumber 2. The structure of the second zonal harmonic from van Loon et

al.'s (1973) analysis is shown in Fig. 6. As in the case of wavenumber 1 (Fig. 2),
the height variance of this wave is concentrated in the middle and high latitudes.
North of 40°N the amplitude increases monotonically from the middle troposphere to
30 km and the wavé slopes westward with height, althbugh much less than the gravest
harmonic. The tropospheric amplitudes are as large as those of wavenumber 1 (in
some areas larger) but at 30 km wavenumber 1 is 1afger by a facter of at least two.
South of 40°N the amplitude of wavenumber 2 is insignificant, except near 12 km,
which coincides with the southward bulge cf the mean zonal wind (Fig, 4) maximum.

We note that zonal wavenumber 1 also had a weak amplitude maximum in that region.
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Zonal wavenumber 3. The results of van Loon et al. (1973) for this wavenumber

appear in Fig. 7. Clearly the height wave is confined to the troposphere and the
first few kilometres of the stratosphere, where its intensity is comparable to
that of the first two harmonics. The tilt of the wave is seen to be rather small

both in the vertical and in the horizontal.

2.3 Sum of Zonal Harmonics

Constant pressure maps - January. The contributions from zonal wavenumbers 1, 2

and 3 published by van Loon et al. (1973) were added together by Avery (1978) to

produce the 500 and 10 mb maps shown in Fig. 8. It is seen that the mean height
field is becoming smoother with altitude, as expected from our discussion of the
harmonics. We also ocbserve the northern progression of the disturbances from 500
to 10 mb. We should bear in mind that while the height variance is concentrated
in the polar region the wind field tends to have relatively more variance in the
mid and southern latitudes than the mass field because of the geostrophic nature
of the flow and the decrease of the Coriolis parameter with decreasing latitude.

This was pointed out, in particular, by Simmons (1978).

Zonal Cross—sections ~ v, January. To give some idea of the wind velocities

associated with the mean January height field we present in Fig. 9 zonal cross-
sections of the meridional velocity component from Saltzman and Sankar-Rac (1963).
The data are presented at 30°N, 45°N and 60°N up to 100 mb only. The largest
values are found near 300 mb and reach about 16 m s~!. If we compare these speeds
with that of the mean zonal wind in Fig. 4 we see that they represent a rather
‘substantial disturbance of the mean zonal flow. This implies that linear models
of the forced planetary waves, which assume that disturbance velocities are much
smaller than the mean zonal wind, cannot be expected to simulate in detail the
structure of the waves, at least in the troposphere. The importance of the

nonlinear terms in the potential vorticity equation appliéable to the stationary

waves has been demonstrated by Saltzman and Sankar-Rao (1963).

2.4 Average Summer Conditions in the Wave Domain

The mean July zonal asymmetries differ radically from those found in January.
As can be seen in Fig. 10 taken from van Loon et al. (1973), which applies to the
same years as the January data from the same authors presented earlier, the maximum
geopotential height amplitude in zomal wavenumber 1 is found at about 30°N in the

upper troposphere. Near the surface a secondary maximum of about 75 m is also
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found near 30°N; in winter (Fig. 2) a similar amplitude is observed near the
surface but at 50°N. The most striking feature of the wave, however, is the fact
that in opposition to January, the wave now tilts to the east with height from
about 10°N to 60°N. This requires that the temperature maximum lies to the east
of the height maximum and similarly the temperature minimum isleaét of the height
minimum., It is easily seen that this implies that on the average along a latitude
circle warm air is flowing south and cold air is flowing north (neglecting trans-
ports by transient eddies). :

We note also that the amplitude of the wave decreases rapidly with height in
the lower stratosphere. We have seen in our discussion of January conditions that
the structure of zonal wavenumber 1 for that month is rélated to that of the mean
zonal wind. If we look at Fig. 11, which gives the mean summer (in Northern Hemis-
phere) zomal wind distribution, we find that the height at which the wave decays
rapidly corresponds to the transition zone from the_lowér level mean zonal wester-
lies to upper level mean zonal easterlies. This neaf-absence'of a zonal wavenumber
1 in the stratospheric easterlies and the eastward tilt of the tropospheric wave
in the troposphere are two important features of the July observations which
atmospheric models should be able to reproduce. k V . o ' :‘ ::t.

Zonal wavenumbers 2 and 3 are described by van Loon et al. (1973) as being’

similar to the gravest harmonic and they will not be discussed in detail here.

2.5 Seascnal Variations in the Temperatufe Field

The annual variation of the mean monthly 500 to 1000 mb thickness along 45°N
is presented in Fig. 12. The data were extracted from maps published by the German
Weather Office (Die Grosswetterlagen Europas) for the period November 1977 through
September 1978 at bimonthly intervals. A thickness of 10m corresponds to 0.49
degrees K. -

Broadly speaking the curves can be collected in two groups, theiNovember to
March period and the May to September period. Within each group tﬁe curves are
clearly positively correlated, while there is obviously a marked difference between
the groups. To highlight the summer-winter differénce the July curve has been
superimposed (dashed) on the January one. The negative correlatioﬁ is quite obvicus.

In winter the coldest areas are found on the eastern part of the twe land
masses and the warmest areas over the Atlantic and the eastern Pacific. It thus
appears likely that the warming influence of the oceans in winter plays an important
role in determining the position and amplitude of the mean monthly temperature wave

up to 500 mb.
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In July the sign of the temperature disturbance is almost everywhere opposite
to that of January. The warm air is generally over the continents and the cooler
air over the oceans. The summer standlng wave is seen to be weaker than the winter

one by more than a factor 2.

2.6 Year to Year Fluctuatlons

Whenever we present climatological averages the question of representativeness
naturally arises. To see how the mean monthly height and temperature fields change
from year to year, we present data again from van Loon et al. (1973). Fig. 13
shows thektropospheric height and temperature for zomnal wavenumbers 1, 2 and 3 at
selected 1at1tudes for 1964-1970. We note first that while the amplitude of the
height waves iricreases. w1th helght, that of the temperature waves decreases with
height in the troposphere Observe in particular the large year to year fluctu-
ations in (a) the amplitude of height wave 3§ {(b) the phase of height wave 1;

(c) the anplitude of temperature wave 2 in the lower levels. -

The year”to year fluctuations are much larger in the lower stratosphere, as
can be seen from Fig. 14;:which shows the five years 1965-1969. At 10 mb, for
example, the range of temperature wave 1 is about 19 degrees K while the height
wave 1 atzthat level ranges in amplitude fromJISO to 1100m. We should keep these
large flnCtuations in mind later when we compare the results of General Circulation

Models with{observed data.

2.7 Southern Hemisphere Standing Waves

As the land distribution in the Southern Hemisphere differs raditally from
that in thehNorthern Hemisphere, it should be interesting to compare the forced
waves of the two henispheres. Fig.,lS'shows.the radiosonde station network which
provided the information used by Knittel (1976) to produce Figs. 16 and 17. These
figures show the amplltude and phase distribution, in mer1d10na1 cross—-sections,
for helght 7onal wavenumber 1 in July and January.

By comparlng Flgs. 16 and 2 we see that in winter the Southern Hemisphere wave
has a magnltude comparab1e to its Nerthern Hemlsphere counterpart, at least in the
troposphere; in the lower stratosphere it is weaker. The Scuthern Hemisphere wave
seems to be nearly vertical in the troposphere where its amplitude is largest, in
contrast to the Northern Hemisphere wave which tilts westward with height. By
refering to. Fig. 1l we see that in the stratosphere the wave amplitude maximum nearly
coincides with the zonal wind maximum, just as previously_observed in the Northern

Femisphere.
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Fig. 15. Radiosonde stations with observationms at the 30 mb“leVel PRI

the Southern Hemisphere (After Knittel, 1876).
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We see from Figs. 17 and 10 that in summer the height wave is confined to
the troposphere and lower stratosphere where the zonal wind is westerly. We
shall see later, when we analyze mathematical models of the forced waves, that
even highly simplified models can account for the observed lack of significant

standing wave energy in the region of easterlies of both hemispheres.

2.8 Energetics of Stationary Waves.

Having looked at some of the features of the observed forced planetary waves,
we will now summarize some published results on their energetics, i.e., on the way
in which energy is. SLpplled to the waves to maintain them against dissipative
forces. It is remarkable that whlle the 1mportance of the forced waves is well
recognized, our information on their energetics is rather poor. Only those energy
transformations which are believed to be the most important have been computed,
and for some of those the numerical resultc could only be obtalned by introducing
rather crude modelllng assumptlons. '

In order better to apprec1ate the results to be presented and . the types of
atmospheric circulation which are required to effect the energy transfers, we will
first derive the stationary wave energy budget equatlons. Qur starting point will
be the meteoroldéicalbequations in spherical eobrqiﬁates, with pressure as the

vertical coordinate:

U, o My w  ducep M L g_g« L L £ F® @D

BT , BT, AT LT WY (R k)= A s
it T Zeop 22 t 7o +°U(a H¢>+w(a "‘(ﬂ?)" £, (1.3
(2, “ama«p) LW o | O aw
acnp \ 2 o 2

t 29 (1.5)
R
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In (1.3) To is the area-average (on constant p surfaces) of the temperature and

T is the deviation of the'temperéturé]from To.f Folléwingiﬂolton:(lﬂ?S),zfﬁe term
«T/p in (1.3) will be neglected in comparison to kT /p. 1'

(v)

_The functions U, Vs W, ¢, T, F( ), F and H are exprebsed as a sum of a
‘ zonally averaged part "denoted by a subscrlpt Z and a deviation therefrom, denoted

by a subscript E, i.e.,

vhere '( ), = i Smnn Coa

If we substitute expressions of the form (l 6) in (1.1) - (1. 4) and then apply the

averaging operator (1.7) we obtain the follow1ng eddy equatlons

3« Uy \ etne | oug L, A% 0%
3; -(a.cz+;°_ﬂ!-.¢)5mcpnre——z—— +/U;T+wé-.a L
F — J . . : . ( 1. 8)
2 v, | L, U tan @ 2V, 2, - o@-
SIng M 2 58 —= LR g ETE o
> (s + r_Sqo) P Mg + + 5 wg}aa’_ 5y
F ) SR ¢ B)
£ £ o T
27, 2 H
_— w = e—— - (1.10)
—= A E 4 S, . X,
1 M. L D'U'Ecoscp) ;3% _ 4 | @
acos( 2\ 2y 3 1:
where

(u) - | . cosie
4%+ gy iy 3 )

&

+ 2 l we Me - (W, /ug)z\ (1.12)
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We now write the eddy variables as a sum of a stationary part and a transient
part, i.e., ' B

where

() = () + O @)

ttT/2 )
(_ ) SA = :%r S ( )é JZ& :1  S

t-"T/2
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'he kinetic and available potential energies associated with the stationary waveslﬁ;

are then _ ‘
2 2
= Us + 0 o dv . (1.17a)
Ks §, K1 g E S R
T |
A. = x S - f4v . (1.17b)
s T 3y s | |

To obtain the energy budget equations for KS we multiply (1.7) and (1.8) by u_ and’
Ve respectively, integrate over time and over the mass of the atmosphere and add

the two equations. The equation for A is obtained by multiplying (1.9) by RT /pS
and by integrating over the mass and over time. Since our purpose here is to
provide some background for the "observational" results to be presented subsequently,
we will simplify the equations in a way similar to that of Holopainen (1970) whose"
results we want to discuss. Thus we neglect the energy transformations which arise
from the following terms: the vertical advection of momentum, the mean meridional

circulation, the terms mETE in (1.14) and the tramsient part of u,. The simplified
energy equations are (see Holopainen, 1970 for further details)

C(Ass KS) + C(KZ’ KS) - C(KS’ KT) - DS + CB(KZ’ Ks) =0 (1.17)
G(AS) + C(AZ, AS) - C(AS’ AT) - C(AS’ KS) =0 , (1.18)
where the subscripts‘S T, Z refer to the energy of the'stétidnary waﬁes,'ttanSient

waves and zonal flow, respectively. The symbol C(a,B) represents a ‘conversion of

energy from o to B. The approximate expressions for the transformatlons are

(As 1K) = - SE?_;w, 5“’;“ dm ; dm= fo/~v" @)
7

(Kz"{s) = —Susd)gcos¢%(c1;‘-¢> dm R ‘f} | (1.20) . .

(K, Ky) = { 17 )t 2= cas.(,, 53 (M T cos c.o)L @

L [% ) caS«f 53 (/V Casqa) f = ﬁm J}C(m(l .
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2, = -Sv-Edm . a2

= A 2 g . evaluated at th
)__Jf%/u ?j _Q{n;_,eva ated a e average

sufface pressure
(1.24)

- (Az 'I'AS> = S_E_/U} -/; ° = ‘Jm : SRR - (-1‘»26).

Ciasa)= fE T v (Unydm.  am

.. The results obtalned by Holopalnen (1970) for these energy transformations
are summarlzed in Fig. 18. The arrows represent the dlrectnon of the energy flow
and the dashed lines 1nd1cate that the number was obtalned as a re31dual to
balance the 1nflow and outflow of energy in a given box. o

To obtain the dissipation of K_, Holopainen assumed that it takes place

S
entirely in the planetary boundary layer end that it panﬁbe written in the form

D=C¢C vg2 ' (1.28)

where C is a constant and Gg is the geostrophic wind. C was estimated from
information on the mean annual rate of energ§ dissipation (2.3Wn~2) published in
a review of enmergetics by Cort (1964) and the mean annual value of ng at 850 mb
north of 15°N from Crutcher's(1959) data; the resulting value was C = 2.4x10'2Wm"”s23
DS was then ebteined from the relationship (1.23)\with Vg2 repiaccd by (Vgs)z. As
can be seen from Fig. 18 the order of magnitude of the dissipaticn of KS thus
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obtained~is one tenth that of the mean annual dissipation of kinetic energy.
The exchange of kinetic energy between the zonal flow and the standing
waves due to the deflecting effects of mountains, CB(KZ,KS), was obtained by

noting that CB is proportional to the integral of u, and the mountain torque

created by the pressure difference on opposite sidez of mountains. The mountain
" torque values were taken from Yeh and Chu (1958). We note from Fig. 18 that
this source of kinetic energy for the standing waves is an order of magnitude
smaller than the C(A sK ) conversion.

“The main source of k1net1c energy for the waves is the available potential
energy of the waves themselves (Fig. 18). As can be seen from (1.19) this
conversion of energy is a result of the fact that on the average the warm air
within the wave rises and the cold air subsides. While Holopainen obtained this
term as a residual in the energy budget, Murakami (1963) computed it explicitly
using a vertical motion field obtained by integrating the mass continuity equation
vertically. The difficulties inherent in this approach are well known and were
reflected in his results. Depending on whether he used the boundary condition

w=0 at p = 1000 mb or 100 mb he obtained for C(AS,KS) values of 0.65 Wm™2 or

0.31 wm'z for mean annual conditions. So the sign of the energy conversion does
not seem to be 1n doubt but its value is rather uncertain.

The other two conversions affecting KS are C(KZ, S) and C(KS,KT),*both of

which can be evaluated from the horizontal component of the wind fieldﬁ? Holopalnen
used Crutcher's (1959) wind statistics. The results shown in Fig. 18 indicate that
in general the standing eddies lose kinetic energy to the zonal flow and to the
transient eddies. The only exception is C(KS,KT) which is negative in éummer, but
the value is quite small and so presumably the sign could be(wrong. Note that in
winter and for the annual mean ccnditioms the drain of KS by the tranéiént eddies
is of the same order of magnitude as the boundary layer dissipation;

We have seen that the standing waves convert their potentialyenergy to kinetic
energy. Let us now loock at how they maintain their level of potential energy in the
face of this conversion. In other words, the eddy vertical motion field is such
that . there is adiabatic compression (warming) in the cold areas and adiabatic
expansion (cooling) in the warm regions which naturally works to reduce the eddy
horizontal temperature gradient. To maintain the latter at a steady state level'
other physical processes must be active, operating in an opposite sense. As seen

from Fig. 18, in winter the most important source of AS is C(A7,Ao), involving the



228

meridional advection of temperature by the standing waves themselves. = The north- . .
south temperature gradient of the zonal flow is thus seen to be the main energy
source for the standing waves. The same applies to the mean annual flow. In
summer C(AZ,AS) is extremely small and negative,

The sign of the result should not be too surprising if we recall that in the
summer the midlatitude standing waves slope the east with height, implying that

they are transporting heat southward, i.e., increasing the meridional temperature
gradient, hence AZ in that region. -

As for C(AS,AT) we see from Holopainen's results (based on vertically integrated
sensible heat transports) that the transient eddies, through their advection of. .
their own temperature field, tend to warm the cold areas and cool the warm areas of
the standing waves, thus reducing the standing eddy temperature variance (AS).

Finally, we turn to the generation of AS'  For winter and summer Holopainen -
calculated this generation as a residual necessary to balance the AS budget. It is
difficult to ascertain the accuracy of the resulting G(AS) but at least we can say
that it agrees rather well with similar calculations made by Brown (1964) with
different data sets. Holopainen found (see Fig. 18) that in winter G(AS) = 0.62Wm™2,
the negative sign implying that on the average the warm regions of the stationary
waves are cooled and the cool regions are heated diabatically by the stationary '
sources. Brown obtained G(AS)= ~0.74, -0.65 and -1.2 Wm™2 for January 1959, 1962‘
and 1963 respectively.

Both Holopainen and Brown's results indicate that in summer G(AS) is positive.
The former found G(AS) = 0.43Wm~2 and the latter obtained G(AS) = 0.24 and 0.21 Wm™2
for July 1961 and 1962. '

So we see that according to the above results the energy cycle responsible for
the maintenance of the stationary waves is fundamentally different in summer and
winter. In winter the energy source for the waves is the meridional temperature
gradient of the zonal flow; the stationary heat sources are reported to drain
energy from the waves, although they may be largely responsible for the existence
of the waves in the first place. In summer the energy cycle is computed to be a
more direct one in the sense that the stationafy heat sources and sinks maintain
the available potential energy of the waves which is then converted te eddy kinetic
energy, which is in turn dissipated in the boundary layer.

We conclude by stressing the tentative nature of these results. As Holopainen
himself pointed out, many simplifying assumptions had to be made to estimate some
of the conversions and hence the numbers quoted above must be considered rough first

estimates.
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Fig. 18. Upper part: energy processes affecting the stationary

disturbances. Lower part: numerical values of the energy balance of
the stationary disturbances for normal winter, normal summer and for
mean conditions over several years over the Northern Hemisphere (15°N -
90°N; 100 mb - 1000 mb). Dashed lines denote processes which have heen
evaluated purely as residuals. Units for energy: 10% J m™2; for
energy change: 1072 W m~ 2 (Redrawn from Holopainen, 1970) .
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2.9 Stationary Waves in a General Circulation Model

A number of general circulation models (GCMs) have been developed to
investigate various aspects of climate. The stationary waves found in these
models when their output is averaged over an extended period of time have been
discussed, for example, by Kasahara and Washington (1971), Kasahara et al.

(1973) and Williams (1976) at the National Center for Atmospheric Research
(NCAR) and by Manabe and Terpstra (1974) and Hayashi and Golder (1977) at the
Geophysical Fluid Dynamics Laboratory (GFDL). 1In this section we will present
just a few of the results obtained at GFDL and NCAR to indicate in general terms
the extent to which GCMs can reproduce the observed stationary waves.

Hayashi and Golder (1977) analyaed the diSturbances that appeared in a
global model with 11 levels in the vertical and a horizontal grid spacing of 2.4
degrees. The external forcing of thehmodel was controlled by the solar radiation
and the prescribed sea surface temperature, both of which had a seasonal vari-
ation. Mountains were included and the temperature at the land surface was
calculated through a heat balance requirement. The results presented here were
obtained by averaglng the model states from October through March.

The mean zonal flow is shown in Fig. 19. We note that in the troposphere
the mean zonal wind agrees reasonably ‘well with the observed state, f'\g In
the lower stratosphere the model falls to reproduce the observed relat1Ve minimum
and at 10: mb the model winds are too strong by a factor 2. We should keep these
def1c1enc1es in mind when 'we compare the computed and observed forced waves s1nce,
as we have. seen before, there is evidence show1ng a relatlonshlp between the mean
zonal w1nd and the structure of the forced waves. We will return to this p01nt in
our dlscussion of simplified forced wave models. ‘

Fig. 20 compares the model and observed structures of stationary zonal wave-
number 1. We see that the computed amplitude is too large by a factor of more
than 2 near 10 mb. The explanation for this is not clear at this time. In the
troposphere the max1mum amplltude near 300 mb is- roughlv 257 larger thah that of
the seven-year average flow for January pub]lshed by van Loon et al (1073) The
model wave slopes westward with helght in mld latitudes: as observed Between 30°N
and 80°N the wave: tllts from the southwest to the northeast, th1s agrees w:th
observations from about 30°N to 50°N but north of 50°N the observed tiltis'in the
opposite direction.

Hayashi and Golder peint out that even when the yeat to year fluctuations in

the observations are taken into account, the conclusion still holds that the model
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Fig. 19a. 'Latitude—height section (pressure (mb) left, height (km)
right) of the mean zonal wind of the numerical mcdel during the period
October-March (After Hayashi and Golder, 1977).
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Fig: 19t, Latitﬁde—héight‘section of the mean zcnal wind in the
dtmosphere during the pericd December-February (After Hayashi and
Colder, 1977, coriginal diagram from Newell et al., 1970).
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stationary waves are too strong (and the transient ultra-long waves too weak) .
It is nevertheless interesting to compare the model wave structure with the
observed one for January 1958 (Fig. 3). We notice that now the model wave in
the upper troposphere is weaker than the observed one. Recall that the model
results apply to the six-month average October through March whereas the
observations apply to a single month when the wave is at or close to its peak
intensity. Even here, however, the intensity of the model wave at 10 mb is
much too large and the observed phase tilt in the horizontal, from scutheast
to northwest near 55°N, 200 mb, is not reproduced by the model.

Fig. 21 shows the normalized amplltudes at 50°N of the geopotenL1a1
temperature and vertical motion for the model standing wavenumber 1 .as well
as the phase relatiomships between the varlables. We see that at least in the
troposphere the southward moving air is cold and isfsubsidlng;_ From the
energetics point of view this means that at 50°N zonal availabla'potential
energy is being converted to stationary wave available potential‘energygand
the latter to stationary wave kinetic energy.- ', :

Hayashi and Golder found that zonal wavenumber 1 in thelr model has a
positive conversion C(AZ,A ) almost everywhere over the northern hemlsphere up
to 10 mb. The zonal integral of H /S which appears in the expre551on for
G(A ), is generally positive except near the ground between 35°N and 60°N where
it is negative. In other words the diabatic heating in the. mid—troposphere,
resulting mainly from moist conmvective heating, tends to take'place in warm air

and generates A in the lower troposphere the heating is due mainly to

g>
sensible heat flux from the surface and tends to occur in cold air, thus
destroying AS‘ The net effect appears to be a positive G(A )5 at least as. far
as can be ascertalned by inspection of thelr merldlonal cross—sectlon of the
zonally averaged product H /S (their Fig. 5.9a). ‘ ' '

In short the model energetlcs agree with Holopainen's calculaticns in so
far as the zonal available potential energy is the main source of energy for
the winter standing waves. As for the role of diabatic heating the agreement is
far less obvious. Holopainen and Brown found that the diabatic heating destroys
AS in the atmosphere while it seems to be a source of AS in the model if mass-
integrated effects are considered. It remains to be seen whether these results
are related to the fact that the model standing wavenumber 1 is more intense than

normally cobserved in the atmosphere.
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Let us now look at the vertical structure of zonal wavenumbers 1 and 2
of the height field along 60°N (Fig. 22) published by Kasahara et al. (1973)
for the NCAR model. This particular model has 12 layers in the vertical,
each 3 km deep. The horizontal resolution is 5 degrees in longitude and
latitude (coarser than the GFDL model just discussed). The earth's orography
is included and the sea surface temperature is spec1f1ed We see from Fig.

22 that the model succeeds in reproduc1ng the 1nten51ty of the observed wave

1 above 18 km but that the wave is too far to the west. The importance of

the earth's orography in determining the amplitude of this wave in the strato-
sphere is evident. As for wave number 2 the model has a reasonable amplitude
at about 20 km but it fails to reproduce the observed growth with height; the
phase of the wave does not agree well with the observations from van Loon et al.
(1973).

Some of the discrepancies between GCM stationary waves and the observed
ones can be seen from Fig. 23. The figure compares the variance at 500 mb,
50°N in the stationmary waves, transient planetary waves and smaller scale
transient waves in the GFDL model (Hayashi and Golder, 1977), the NCAR model
(Kasahara et al., 1973) and observations. We see that (at least for that
coordinate) the GFDL standing waves are too intense and the NCAR ones too weak
when compared with observations. It seems also that for both models the ratio

of standing wave tc transient wave variance is too high.

Contribucion to standing waves by topography. Since it is possible to integfate
GCMs with and without the earth's orography it is possible tc compare the two
integrations to determine the role of topography. Such comparisons by Kasahara
and Washington (1971) seem to show that the earth's orography plays a secondary
role compared to diabatic heating in the troposphere. From Kasahara et al.
(1973) we find that in the stratosphere, on the other hand, the circulation is
significantly modified when the earth's topography is removed from the model.
In particular the Aleutian anticyclone which is reproduced reasonably well by
the model with topography 'is absent in the model without orography. This seems
to be a consequence of the weakening of wavenumber 1 (see Fig. 22) when the
nountains are removed. | ‘

The effects of mountains at 45°N, 500 mb and 1000 mb in the GFDL model of
Manabe and Terpstra (1974) can be seen from Fig. 24. The effect of topography

is seen to be rather important at boeth levels.
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variations of 1 to 3 weeks and zonal wavenumbers 1 - 3, and "baroclinic
waves (BAR), i.e., higher frequency disturbances with zonal wavenumbers
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of values for four observed winters (After Pratt, 1979).
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In closing it should be pointed out that the effects of topography and
diabatic heating are not strictly separable, as already noted by Manabe and
Terpstra. The topography alters the distribution of precipitation and
diabatic heating so that when mountains are removed from a model the heat

sources are to some extent simultaneously modified.
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APPENDIX
List of Symbols
a mean radius of the earth _
cp specific heat of dry air at constant pressure
dA element of area
dm element of mass
dv element of volume
3( )/3x 3( )/acosyai
3( )/3y 3( )/ade
£ Coriolis parameter
g acceleration of gravity
n zonal wavenumber
P pressure
t time
u zonal wind compomnent
v meridional wind component
w vertical wind component in height coordinates
A available potential energy
f friction force, with zonal and meridional components F(u),F(v)
H diabatic heating per unit mass per unit time
K kinetic energy
R gas constant for dry air
S static stability parameter, KTO/P - 3T0/3P
T deviation of the temperature from its area average
T0 area average of T on a constant pressure surface
o specific volume
A longitude
¢ latitude
o geopotential
p density
W dp/dt
K R/cp
T averaging periocd 2
(), zonal average of ( ), Eﬁ: S ( )dx

°

( )E () - ¢ )Z; eddy part of ()

() time average ¢f ( ) , i.e., standing eddy part of ()
E
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FORCED WAVES IN A MIDDLE LATITUDE BETA-PLANE MODEL

1. The Model Equations

As a first approach tc the problem of modelling forced stationary waves
we will use a quasi-geostrophic model on a Beta plame. The geometry of this
model leaves much to be desired but most of the basic physics of the problem is
retained and as we shall see a wealth of important results can be extracted
from the model.

Our model equations will be

3V 4 V(v £F) = % (pw) W

or fi 0
92 ay w N K y
\/ v -—— —_— S = e— (2)
ot 22 t - f., HY, H
where Z = - Hln(p/PS)
V = kxvy

P, = psexP(—Z/H)

and the other symbols are as defined in appendix A. In (2) we used

3¢p/3z = £ aw/az Eliminating w between (1) and (2) we obtain the potential

2% ,V.vg = k2 (LK )
ZtviTe = - BE(N‘H H) . (3

In much of ocur discussion we will' be concerned with the stationary wave propa-

vorticity equation

gation away from the energy source region, i.e., we will work with the equation

for adiabatic flow

2% = L
-a-i_- + (VL V?‘ = 0. (4a)

In the above g, the potential vorticity is given by
= ¢ LYD (L (4b)

To simplify the problem we shall treat the problems of horizontal and vertical

propagation cf forced waves separately.

2. Horizontal Propagation
In this section we examine the problem of a wave which is forced at
some latitude Vg through some unspecified steady mechanism and which propagates

away from the forcing. For simplicity we will use a barotropic medel so rhat
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the influence of the forcing can only propagate horizontally. In this case the

governing equation for adiabatic inviscid flow is

—_a_,% —7. = ‘ | T - ‘(Sa)
S 4vvg =0

with
4

We express variables as a sum of a zonally averaged part,'denoted.By an

VYt h o+ Py | (5b)

overbar, and a deviation from the zonal part, denoted by a prime; thus
— \ : .
g9 = ﬁ%i)+9(%mﬁ ()

where 'q—_ = _g_;? 1‘/;7‘%3 / ?I_-:Vz‘&

Substituting (6) into (5a) and averaging zomnally, we get

°F = - 2 x'gr . o e )
ot 23 _
Subtracting (7) from (5a) and neglecting products of primed quantities we get:

the linearized potential vorticity equation

39' - 39‘ ! 31 -0 - (8)
ot Moot 2y — _
It should be kept in mind that our discussion now is restricted to small‘ampli-

tude perturbations.

If we multiply (8) by q' and then integrate zonallvae get

2(8) - _ 2% oo (9)

ovcmurm —

24 2 "’D;

We find that if the disturbance is steady, i.e. if 3(q')2/9t = 0 (the wave need

not be stationary; it can be propagating along the x-axis, as long as it is not

growing or decaying in amplitude), then

(3q/3y will be assumed positive because of the streng contribution of B). Thus

if the disturbance is steady in a latitude band the right-hand side of (7)

vanishes and we find that

Y
+=)

= 0. : » (11)

o)
[ s
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In short, a steady disturbance will not change the potential vorticity of the
zonal flow (32G/otdy = 0).

Now by using the definition of q' we can rewrite v'q' as

el = - 2 (m'n) (12)

4

so that (9b) takes the form

2 (¢ - _ 2% 2 o
S =T by (MY -

and we find the important result that for a steady disturbance

5 (w's) =0 (1=
o - C | 1)
or

 where C is independent of y; that is the zonally averaged wave momentum flux

u'v' is independent of latitude. It is easily seen then that if the fluid is
“bounded by a rigid wall at some latitude y = Vg u'v' will be zero at the wall
because v' = 0 there, and by (14) u'v' will be zero at all latitudes between
~ the wall and the forcing. In the case of a pure harmonic wave in x the ridge
| and trough lines of the stream function will have ho tilt in the north-south
direction. ’

| . As shown by Eliassén and Palm (1961)l the momentum f£lux by a steady wave
is related to the wave energy flux ;TaT. To see this we start with the

linearized first equation of motion

— /
a’ - ' Y7 ¢ |
—_— m = o+ - ——
ot t SN v 24 ox tda.
For a wave disturbance u' = G(y)exp ik(x~ct) we get

- ) ! — /
(A*,_‘:) %%ﬁ_ o i - - Qué ¢ f'Ar, )

’33, ’ oX
Multiplying both sides by ¥' and averaging over x we get
F= g =-(a-£)auw . (15)

. H »
We see that for a stationary wave (c = 0) in a westerly current the

wave energy flux is southward (v'¢' negative) when the momentum flux is northward

1 . . . .
But see appendix B for a different interpretaticn.
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(u'v' positive), and vice versa.

We found in (14) that u'v' is independent of y so we have

and the flux of energy is seen to be proportional to (u~c).
Let us now solve the linearized barotropic vorticity equation for the

simple case u = constant. We have

v —O. 17
atV’L + u % ¢+ﬁ | |

At Vg we force a stationary wave by imposing

¢'(3F) = ¥ cos kx. (18)
Substituting a solution
Zi[Q(J) et 4 %y) ¢*°.kx_] , kdo (19
Wheré the asterisk denotes a complex conjugaté, into (16) ﬁe get

dg +(,é kz)@ =0 . . , (20)

1f g/u-k? is negative, i.e. 12 =’k2—B/G'> 0, then

-£4

&D = Aeﬁj + Be

We consider a domain extending from Vg southward to y = —». To have a bounded

solution at -« we must set
B=20

and the amplitude A is determined from the boundary condition (18). TFor

convenience we set the origin at the forcing latitude (yF = () and get
’ V4 :
¢ = 5&,_. e 4 cos kz . (21)

The amplitude of the wave is seen to decay exponentially away from the source
(in négative y region) and it has no phase tilt in the north-south direction.
We recall from (15) that this implies that the wave energy flux is identically
zero. Solutions of this type are said to be "'trapped". They apply to

(i) All zonal wave numbers k when u < 0 (easterlies)

(ii) "Short" waves, k? > B/u, when U > O ,
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The other possibility to be examined is 8/u-k? = y2 > 0. TFor this case
to be applicable, the mean zonal flow must be westerly and the zonal wavenumber

must be sufficiently small. The solution to (19) is then '
¢ -
O = Ae?? +Be™ ™, uso. L

In this case both parts of the solution are bounded at -« and we must invoke
another boundary condition. We will use the Somerfeld radiation condition,
which states that at -« there can be no flux of energy towards the source at

y = 0. Thus we require v'¢' to be negative (southward flux of energy) as

y + -». Since here U > 0 and ¢ = 0, (15) implies that we take u'v' >0 as

y > e

If we substitute (21) into (18) to obtain ¢' and then compute u'v'

we obtain
W' = k() - |AT)

We see that the "B part' of the solution (22) contributes a positive momentum
flux, but the "A part" contributes a negative momentum flux, i.e. it is a
solution which propagates energy northward to the source. We must therefore

set A = 0 and get, using (17),
w' = ¢ cos(kx-puy). - - (23)

Note that y' has an amplitude which is independent of y, so that the effect of
the forcing is felt at great distances away from the forcing latitude. The
phase lines tilt from the south-west to the north-east and héncé‘the wave
energy flux is southward. A solution of this type is called a "propagating

wave'.

3. Vertical Propagation

To examine the problem of the vertical propagation of a disturbance
forced in the lower atmosphere by a steady forcing we will use a Beta plane
model bounded by rigid walls at v = 0 and y = D. The disturbance will be

forced by prescribing a vertical velocity at the lower bdundary of the form
1 «
amr (XY Z =0, t) = Wg Sin f; cos k(x-cl) (24)

where _ n
L = ZZ
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with n a positive integer. The flow will be assumed adiabatic and inviscid.
The mean zonal flow will be taken to be a function of Z‘only. In such a model
there is no horizontal propagation of energy and so the mechanism of vertical
propagation can be isolated.

Our model equation is

3__?' VA _ ; : (25a)
2f 4 v.\79, =0
with _ v ) _‘/) (25b)
9 bt 5 (‘}/5 53)HREy
v = ke x vy, (25c)
The zonally averaged part of (25a) is
29 3 (o igi\ | (262)
= - £ (n
= _ R gp ¥ (261)
where N Y AR
’_ 2! Lo (L 3. (26¢)
T = v¥ 4 =l az) - T
The linearized perturbation form of (25a) is o ,
29" 4 529 197 - S 2
3% + M 5% + ?g N | 27
Multiplying by q' and averaging zonally we get
2 (9 - _ 22 7
o1 T - oY vy (28)

which is identical to (9) of the previous section, except for the definition

of T and q'. Again we find that for a steady disturbance
gl =0 . | (29)

Substituting for q' from (26c) we get

— L 2 /p ' ob (30)
' vg "”')"'f, D?(%‘ > .

}

Because of the type of forcing we are using and the form of (27% the stream-—

function can be written as
QDI - @ [_@(2) ecé(x-cf)Js/h /}

for which the momentum flux u'v' is zero. Thus (30) yields



250

S _a_ f_? |a¢l (31)
S o2 \ NY N2z > 0.

We will now show that the quantity in brackets is related to the vertical wave
energy flux. First we note that if we multiply the linearized adiabatic

versions of (1) and (2), i.e.

a 2 ! - & LI} ag I l.; 9 ? 32
a— \V, ¢ 4+ = V4 ﬂ' + = A = —_— - (ﬂ w ) (32a)
._.‘ ._I + AU _0 _.’ — /4"" a + {! 1”.' -0 32b
bz‘ 'Z>£ ’ 'DJ‘- 22‘ az {" ( )

by -0 w and (fozpolNz) 3y'/9Z, respectively, add and integrate over the

volume between levels Z] and Zs, we obtain the energy equation

;g[”v“ b B JNV - § AR ~[£¥°w'¢/'ﬁd:\)

dtv ?2 02

E-

z

zZ

'
(33)

where A is the horizontal area of the domain. The time rate of change of the
perturbation kinetic plus potential energy is seen to be given by conversion
of available potential energy from the zonal fiow (first integral on the
r.h.s.) plus the rate of flow of Wavebenergy into the volume. Sco the vertical

flux of wave energy zonally averaged for a fixed y is
F = '};fo w'¥! ' (34)

Now multiplying (32b) by ¥', using 3t = -c3/9x and averaging zonally we get

IR fo — v’ 124
Y = - (M',C) X 22
i.e s ' { 'o (&-L) . ] a¢l a(// (35 )
Foo= hfowd N* k. 2X D2 :
or = [(EO LR 77 (35b)
- N - H

We see that for a stationary wave in a westerly current the vertical flux of

wave energy in our adiabatic inviscid model is upward {(w'}' > 0) when the
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eddy heat transport is northward (;TET > 0) and it is downward when the wave
heat transport is southward. Put another way, the flux of wave energy is
upwa:d when the wave tilts to the west With'héight and downward when the wave
tiits to the east withuheight, when @ > 0. Now we found in (31) that for a
steady wave pol\l"2 v'u'/3zZ is independent of Z; this combined with (35a)

implies that ;
Felp e = (inC 2

where C is independent of Z. So the flux of wave energy in the vertical
varies in proportion to (u -c).

| We recall from.(l6) that a result similar to (36) was obtained for
the case of pure horizontal propagation (see (16)). We note first that if
at some level the vertical flux of energy is zero, as would be the case in a
model with a rigid 1id as an upﬁer boundary then, assuming (u -c) # 0, we
find from (36) that C = 0 and so F = 0 at all levels and the phase lines of
the stream function are vertical. We will see later that the boundary
cbndition w = dp/dt = 0 at p = 0 in finite difference models is equivalent
to a rigid 1id upper boundary condition.

We note also from (36) that if u varies with héight in such a way that
G‘—é = (0 at Z~= Zé, célled the critical level, there can be no flux of wave
energy across Zc’ as F f‘Qthere. For stationary waves this is the level
where "the westerlies change to easterlies. Although our present analysis is
valid strigtlywspeaking only for small-amplitude inviscid adiabatic waves,
it is nevertheless indicative of thé feéson why the mean monthly height waves
in the summer stratospheric easterlies have such small amplitudes - the
stationary wave energy generated in the troposphere cannot flow across the
u = 0 level.

Let us now obtain the solution to the linearized potential vorticity
equation (27) subject to the lower boundary condition (24). As an upper
bbuhdary condition we will require that the wave energy density be bounded at
infinity; if that condition does not yield useful information we will require
tﬁat there be no flow of energy from o towards the source at Z = 0. For
simplicity here we will assumevﬁ = constant. Solutions for cases with u a
function of Z can be found in Charney and Drazin (1961). We will also assume

that the horizontally averaged temperature is a constant so that
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po'lap /37 = -B~! = constant, N = constant = 2 X 102 -1,

The potential vorticity equation is then
E] —!l)[v‘w’ E') )} Y0
(at U o I (% /j ‘f : |
Equations (24) and (32b) yield the lower boundary condition

2+ W' o - 38)
<’0t '01) = ry We A /d"y cos k(x-,czl) . (38)
Substituting a solution of the form

Cltny 2,6) = [ H@)FAD 1 Plaje ko sty

3
into (37) we get ( 9)

° 2 .
J,az L&D_E“}al-( —-k*)E =0 G
where K2 = k2 + 12. This can be reduced to an equation with constant‘éo—

efficients by the substitution ; _ ‘ v
2/aH
¢ =@ e (41)

~
in which case ¥ satisfies

1“§+[5<7{1-7-F‘)-4%\~}§“ =0 .. @

We pote that the wave kinetic energy density, po(u'2~+ v'z)/Z, is proportional
~ e

to pol@] 2, hence to |LI(Z)\ 2, We can therefore use (D (Z) as a measure of

the (square root of) wave kinetic energy demsity. Also, § and & have the

same phase so that the tilt (or lack of tilt) of ¢ is indicative of the
vertical propagation (or lack of it) by the wave.

To solve (42) let us first consider the possibility

Nl i \ 2 ‘ :

. g _IS___ - - = Y

[ o ( T K ) 41—\‘} >0 . (432)
that is

U-L <O or M-k ﬁ v . (43b)

K>+ £ /410N

In this case the solution is

~a __f\z " .
¢ = Aec - 0. S (ah)
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The other possible solution Bexp(rZ) must be rejected to have a bounded energy

density at infinity. Using (38) and (39) and (41) we get

¢/’ = N We | . e('lzu _r)iSink(JL-,CL‘)S.IY‘g
fo k(a-£) (r-'2n) | 45y
We know from (44) that the energy density of the ﬁave decays exponentially with
height; the amplitude of ¥ ', on the other hand, as seen from (45) will grow
or decay with height depending on whether or not the magnitude of r is less
than 3#H. We also see from (45) that the phase lines of‘the stream function are
vertical so the vertical wave energy flux is identically zero. 'The‘wave is
therefore "trapped". ' | -

The other possibility in (42) is

X

- 4 — = - (46a)
fuz ( ’V-—’ I ) 4' f >O
i.e.
0O < U-£ < /3 = = M, (46b)
ZUN S
in which case the solution is _
~ iz _ivE o
L = Ae + DBe S, rvo. D
Using (39), (41) and (47) we can write the solution for ¢' as
, vz - ket | ¢ (/ex-r‘E'A—’k',c‘z‘) q z/aH
V7 (%l'j"t',i): ZL[AC ) +Re : ]e ‘
+ complex conjugate. » : (48)

The solution proportional to B slopes to the east with height, i.e. it has a
downward energy flux at infinity and must be rejected by setting B = 0. Using

the lower boundary condition (38) we get

Ql/' ﬁz Wi St gg— z/ft’ﬂ[

= <

b Rla-c) (7 41/4n) v cos(lex +r2- kﬁt)‘“ sin (lex 472 - krtﬂ

(49)
This sclution slopes to the west with height, has an upward energy flux, has a
constant energy density with height and has an amplitude which grows exponenti-
ally with height. It is a ''propagating solution".

We can summarize the regions of applicability of solutions (45) and
(49) by means of Fig. 1 which has been drawn for the case of stationary

forcing, ¢ = 0. It is clear from the figure that the conditicns favorable to
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the penetration of forced statiomary waves into the upper atmosphere are weak

westerly zonal winds and/or long wavelengths.

Trapped waves for strong westerlies

Trapped waves for all wavelengths
in easterly winds

13 and/or short wavelengths
L g

g

g Propagating

- waves

g

g 9 2

g

o

B

=

Fig. 1. Schematic diagram showing the separate regionms where trapped and
propagating solutions are obtained for the case of stationary forcing with
G = constant. The curve is the plot of G = B/ (K2 + £2/4H2N?).

Orographic Lifting. If we assume that the forcing of the stationary waves

results from orographic lifting, we have

-

W = v-v'ka 2= h (50)
where hg is the height of the ground above some reference level. Linearizing
(50) we get

' -— ” _a_. L] : =
AU = x g Z. (e
T o ) / s .
With ’ﬁa = *ﬁj Sin kx Slhta (51)
we find from (24) that
P -~
w, = #k#h, (52)

and hence the stream function for the trapped, orographically forced waves is

&' = 4

Nl / (.'/ZH- r)Z
i

e Sin lex s.‘n?a (53a)
° (r""/zH) ;' :
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and for the propagating waves it is

(g NE_L 2N ‘ -0 (53b
b= AJ fo (rt4'/e0%) r cos(iex Hz)—alﬂ Sl v 2) S"‘)?J (330)

2

. N 2 I

The amplitude of the mountain harmonic hg in (51) is a function of

the wavenumbers k and l;'but for the purpose of the following discussion we
will assume it is not.
From (51) and (53) we see that
(i) the trapped waves are either in phase with the orography or exactly
« half a wavelength ou£ of phase, depending on the sign of r-3H. Now
= 3H at K2 = g/d; for "short" waves, i.e., K2 > B/ﬁ’the forced
waves are out of phase with the topography. Because of that phase
relationship the trapped waves do not exert a torque on the topography
'wﬁich is consistent with the fact thaﬁ they have no vertical energy
flux. '
(ii) At r = 3H, (K2 = B/G) the amplitude of the forced wave-is singular
: and the present model breaks down. |
(iii) At Z = 0 the siné pafﬁ of the propagating stream function is out of
- phase with the topography and exerts no torque on the topography;
- the cosine part, on-the other hand, leads to higher pressures on the
west side of the mountain than on the east side and makes a contri-

_bution to the mountain torque.

The amplitude of the propagating stream function at Z = 0 was computed
by Hirota (1971) as a function of T and the zonal wavelength 2n/k with all
other parameters képt fixed;A the meridional wavelength was assumed infinite
so that K? was set equal to k2. The results are shown in Fig. 2.

Charney and Dragin (1961) have shown that if the cartesian geometry
of the present analysis is formally replaced by spherical geometry, then K2
is replaced by n{n+l)/a? where a is the earth's radius and n is the degree of

. ) m imA . . .
the spherical harmonic Pn(¢ Je which describes the horizontal structure of
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Fig. 2. The amplitude of the stationary stream function in units of

103 m2s~! forced by a sinusoidal mountain of amplitude 1.25 km, as a
function of the mean zonal wind speed and wavelength.
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the wave. They also state that the dominant harmonics of the earth's oro-
graphy have n > 3. For n > 3 we get L/2m < a/J n(ntl) = a/\fIE or L < 11,500
km. From Fig. 2 we see that some of the forced waves would propagate vértif

cally only if @ ¢ 38m g1

4, Horizontal and Vertical Propagation
For the case where the wave can propagate horizontally as well as
vertically and @ = U(y,Z) we can use equations (25) through (30) except for

(26b), the definition of ﬁ, which is now

e EA(EE) Ry w

To obtain the energy equation for the present problembwe multiply'

(32a) and (32b) by —pow' and (fozpo/Nz)Bw'/aZ, respectively,badd and integrate

zonally. The result is

“ !

[?BHZ ”(aa” = -f —«TAT' P a2

N"&

“fogy () - S (phow'v?) . O

By the same procedure as in the previous sections we find, using the momentum

and thermodynamic equations, that for a stationary wave

A

Fo= Rbhogd = P war! . (s6a)
pa a1 Fut YL - N
F, = f 'Fa wy' = f, R)'a‘ oA 332 . : (56b)

Substituting into (55) and using the fact that the wave is steady we obtain

A ES XD -w_(t’ byt 3 ] =0. 6D
We can write, formally,
- —_— £ " T
R = (-Pou'n')g v (foaw gﬁ)k oo

-

) 2
v o= 333+k.02
and, assuming G # 0, (57) implies

Y
.R = 0. (59
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-
Since R is nondivergent we can write it as

e

B = TxVE = £ o&hnm (60)

re : . +‘-
where i is a unit vector pointing along the positive x axis, t is tangent to
the { contours and n is normal to them. Using (56) and (58) we see that the

flux of wave energy ¥ =A§%H +-ﬁﬁv can be written as

- -

F = wiR. : (61)
Equations (60) and (61) imply that the curves $ = constant are streamlines
for the flow of wave energy in“the'y ~ Z plane. Fig. 3 illustrates the
streamlines as dashed curves.

The flow of energy between two streamlines is given by

$Fdn = JaRen = & [(ma@/fm)dn

-2 "~
= ¢ ,uAAgb (62)
o\ : 4
where Ay is the increment of y from one streamline to the next and EA is the

‘- - . . - .
average value of U along the path of integration. Since Ay = constant for two

neighboring streamlines we see that the flux of energy is proportional to GA.

From the definition of m we see that the energy flows along each
streamline in the same direction throughout the length of the streamline as
long as u > 0. Equations’(Gl) and (62) imply that the flux goes to zero as
we approach a line where U = 0 so that the wave energy cannot cross that line,
called a singular line because the steady perturbation potential vorticity
equation used to obtain these results is singular at 4 = 0. Note that for a

steady wave ¢' = ¥(y,Z)exp ik(x-ct), (27) leads to

2O , 5. 2 p 2f BRI
b sl i) amy Kreew

so that the equation is singulaf if somewhere G = ¢ with 3q/3y # 0. If such a

situation arises (63) poses some important difficulties which we will now
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discuss very briefly. A more detailed discussion can be found in B&land (1978)

and the references therein.

The singular line. ’iﬁ will suffice here to deal with the barotropic version
of (63) for a statiomary wave, i.e., '

z@ ﬁ—é‘a/afg‘ _ . _
Ty +[ = /e)@—o (64)

and we will assume that at some latitude y = 0 we have @ = 0 so that (64) is
singular there. Two solutions to (64) can be obtained by the method of

Frobenius. They are
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where a prime on u indicates differentiation with respect to y and the subscript
¢ means evaluation at the critical line. Note that ¥; and Y are bounded at
= 0 but 3¥,/8y, and hence u', is singular. The solution to (64) can be

written as
" ‘ ;
T = A? g+ 3 Y - (65)

Of the four comnstants in (65) two can be determined by the boundary conditions
at the nmorthern and southern boundaries but the other two can only be found by
reintroducing some of the terms (nonllnearltles, dleSlpatlon, tran51ence) which
have been neglected in (64). In fact it is because these terms were neglected
that we obtained a singular equation. It is clear that in a real4physical
system the flow would become nonlinear or dissipation would become important
before the wave could reach an infinite amplitude in u' as obtained above.

The main difficulty here is that if nonlinear effects alome are re-
introduced to determine the constants in (65), a different solution is obtained

from that found when dissipative effects alone are reintroduced. Briefly, when
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Fig. 3.  Schematic diagram showing the wave energy flux (arrows) in
relation to the mean zonal wind speed (solid lines). The dashed lines
are streamlines for the energy flow. Note that while the energy source
and sink regions can be interpreted as areas of energy exchange between
the zonal flow and the wave, both are steady due to a compensating ‘
energy flux divergence or convergence; see text and appendix B for more
details (After Eliassen and Palm, 1961).
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viscous effects are invoked we find a ¥ solution which slopes from the north-
east to the south-west north of the singular line, implying an energy flux
" séuthward towards the singularity; in the easterlies to the south there is

. no phase t11t and no energy flux. Tﬁus‘at y = 0 the momentum flux u'v' is

dlscontlnuous, belng p051t1ve for y > 0 and 0 for y < 0. 1In contrast when

- -nonlinearities are invoked.to close the problem the momentum flux appears to

be zero both to the north and to the south of the singular line (i.e., no
'phﬁse~tilt iﬁ<w'); Thére is then no flux of energy and the singular limne
_appears to. reflect back the energy that impinges on it from the source to the
north. 0f course it is p0551b1e to invoke both nonlinearities and dissipation
simultaneously but then the resulting wave structure can be anything between
the two extremes discussed above, depending on the relative magnitudes of the
nonlinear and viscous terms. While the magnitude of the former is determined
by the magnitude of the forcing, the magnitude of the dissipation terms

appears more difficult to fix.
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APPENDIX A

List of New Symbols

phase speed of a wave

- value of Coriolis at centre of Beta plane

o

hg “. | height of groﬁnd above some reference level
wavenumber in x

1 wavenumber in y

m - : zonal wavenumber = k acos (Po

n ‘ ‘degree of spherical harmonic

P, pressure at Z = 0

q absolute potential vorticity

X west—-east coordinate on Beta plane

y south-north coordinate on Beta plane

A horizontal area of the Beta plane

D width of the Beta plane

F flux of energy

H scale height = RT/g

H diabatic heatlng per unit mass per unit time

K horlzontal wavenumber, (k2 + 12)2

N2 square of buoyancy frequency = (R/H)(dT /dZ + T /H)

B8 df/dy evaluated at centre of Beta plane

P stream function

wF amplitude of ¥ forcing

P, latitude at centre of Beta plane

¢ ) zonal average of ( )

¢ () =), eddy part of ( )
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Appendix B

The Definition of Wave Energy Flux

The definition of wave energy flux used in these notes follows the
classical one employed by Eliassen and Palm (1961). As pointed out by Holton
(1974, 1975) it is possible to use a different definiticn and the purpose of:
this appendix is to show the relationship between the two. We will deal only
with the horizontal propagation of wave energy but similar ideas apply to the
more general problem of propagation in the y-Z plane.

Let us start with the x-momentum equation for the mean zonal flow and

for the perturbation (linearized) as well as the linearized vorticity equation .

for nondivergent flow. They are

U P !
il - E(upy! . Bl
5T 33( &) | . - (31)
2u' — ' Y LA ! L B2
2 v - d a¢’ — | A
where u' = —w;, v! = ¢;- Note that (B3) is identical to (8). We form the

energy equations by (a) multiplying (Bl) ByAG and (b) multiplying (B3) by —w';
integrating zonally and using (B2) to eliminate a term of the form Y'd2y'/atdy.
The point of the discussion here is that the resultiﬁg equations can be written

" in either of two equivalent forms. One is

Ml

) -~ F
_a-z_ = - "42}#(« /V) ‘ . (B4a)( )

_a_ 'u'L+Ar‘l ; 2)_ —T——l - .7 1
at-( ) + l-ﬂf @' +u At4f') (4(47 )

(B&4b)

The other is

HE) @) - E e

(A;?ET) — —auln ?_g—. (B5b)
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It is easily verified that (B4) can be rewritten as (B5) or vice versa
simply by differenciating a product; the two forms are thus cbviously
equivalent to each other. Note that by (16) and (l4a) the term involving
the square bracket in (B4b) is identically zero for a steady wave. Thus
adding (B4a) and (B4b) or (B5a) and (B5b) we get that the total kinetic
energy is conserved. Since we have assumed the wave to be steady wé get
3u/9t = 0 whether we use system (B4) or (B3).

As mentioned above, in these notes we have followed Eliassen and
Palm (1961) and used formulation (B5). Holton (1974, 1975) prefers
formulation (B4) and calls [v'¢' + Gu'v'] the "total wave energy flux".
For a steady wave the latter vanishes, as we have seen, and in fact each
of the other terms in (B4) vanishes identically showing immediately that
there is no wave-mean flow interaction.

The interpretation of (B5) requires that we call ;TET the wave
energy flux and Tu'v' the flux of mean flow energy by the wave. By the
Eliassen and Palm result obtained in (15) and (l4a) the divergence of one
just equals the convergence of the other. Thus we can interpret (B5) as
follows for the case of a steady wave in a mean flow: if u'v'au/dy < 0,
indicating a transformation of mean flow energy to the wave, this is balanced
by a divergence of wave energy flux to keep the wave steady. Simultaneously
there is a convergence of mean flow energy flux to balance the transformation

of energy to the wave so that the zonal flow remains steady.
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MODELLING OF SMALL AMPLITUDE FORCED PLANETARY WAVES IN SPHERICAL GEOMETRY

1. Some Effects of Spherical Geometry

_ We have seen that in a linearized Beta plane model steady qua51—
>geosttoph1c waves can propagate vertlcally only if the. mean zonal wind u

is westerly and less than some critical value u,- We will now examine
whether this result applies to models that use the more realistic spherical
geometry. In this case the corresponding problem is one in which the basic
state is in solid rotation, that is, U/acos¢ is a constant. This type of

comparison was first made by Dickinson (1968).

1.1 A Spherical Geometry Model
We consider a model of small amplitude stationary waves forced at
“tne lower boundary. We look for solutions to the model and seek to determine
whether they correspond to disturbances that propagate energy vertically or
“whether they are trapped near the forc1ng.

The linearized primitive equatlons for statiocnary dlsturbances are

ac’:SsP %%, ?;E:o{}? .4 e [7[‘ e aa)?(ﬂmqo)] “’(1)'
.- 2 «"(n 2ifme) @
a:l_m‘f‘%‘%gl.‘% %%g pN a0 ~ ®
ww (B 17 %) 1 haalpa)eo @

We will 1ook for solutlons of the form

“{m,‘ﬂ,w, ¢’} = { uled) (03 wies), Ble,z) } exp cmd (5)

and we w111 take Q= u/acosq = constant. It is then possible from (1) énd
(2) to obtaln expre351ons for u' and v’ in'térms of é'. When these are
substituted into (4) and w' is ellmnnated from the resulting equatlon by

means of (3) we get
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¢ - 4d (Q+d) __ _(L o'\ _ o (Ga),

N* DZ

=Cp
% = M5 - S e @
EE

where

n SL
a.(.:u _n.)

c.oStp 2@\ gi.sin'p 2 gh-sivep ces'yp

(7)

If we then look for separated solutiomns

® (¢ z) & () Z (2) (8)

we get the horizontal and vertical structure equations

{,6 +e€¢=0 @

gl larn) 4 (fo dz 2 =0 (10)
A AZ(N‘ Jz>+ez

where € is the separation constant. Equation (9) is the Laplace tidal

equation studied by Hough (1898) and in great detail by Longuet-Higgins
(1968), hereafter refered to as LH. In their case the model was a
homogeneous fluid at rest on which were superposed free small amplitude
perturbations. For that problem the parameter q stood for -0/2Q where @
is the frequency of the oscillation whereas here it is related to the mean
angular velccity of the zonal wind in which are embedded the stationary
forced waves.

For a given mean zonal flow and boundary conditions o(-m/2) =
o(w/2) = 0, (9) can be solved for the eigenvalue e and the corresponding
eigenfunction ¢(q’). For each zonal wave number m appearing in of} an

infinite number of pairs €,® can be found; we will denote them by E:, @:.
The @2((?) are called Hough functions.

As g0 the solutions to the horizontal structure equaticn (9) can
be grouped in two classes. Class 1 is composed of the gravity wave solutioms,
while the solutions of class 2 are the planetary waves (Rossby waves). As
can»bebseén in LH, as e+0 the horizontal velccity vector of class 1 solutions
is nearly irrotational while that of class 2 sclutions is nearly nondivergent.
It turns out that in that same limit the velocity potential of class 1

solutions and the stream function of class 2 solutions are described very
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nearly by individual associated Legendre polynomials. In other words,.
as 0

-
' %[‘?) ’P (go) ' Class 1

e ~ [ gravity waves
w(cp')'-z 0 ]

and _“A 1 o
1)6(4’) ~ O »;_Clbass 2 N

» [ Rossby waves

F(e) = T (#)

where x(CF) and W(cp) are the merldlonal dependence of the potential and
stream functions respectlvely 'Because we will be presenting a number of

results in terms of the height field it is WOrEh“stressingfthat~it'is’the»‘

Stream functlon ‘of ‘Rossby waves that tends to the associated Legendre

polynomlal P" o’ not the geopotential

Let us now look at the 51gn1f1cance of € in the context of the' N
vertlcal propagatlon or trapping of waves. For s1mp11c1ty we w111 assume
that the basic state is 1sothermal, in whlch case N2 = constant. Ihe a
solution to (10) then has the form - » S

~ Z2/an ':/'—-e’s 2/M
2 o + T D)

where § = [NH/Za(Q+Q)]2 = RZT/Aa‘c (9+9)2 "With 0<<Q, a = 6.37 x 105m,
T = 250K, R = 287 msV?K',,iR/c = 0.286 we get § = 0.024. We see from (11)

that the mode will be trapped if €<1/4S = 10, i.e., we have

€.,-€ ib . ,ve,rtical:ly’ traoped Wa\}e
' - (12)
210 -vertically propagating wave ,

Equatlon (9) was solved by 1H for a large number of different values’
of q, 'which here is a parameter related to the ‘angular velocity of the mean
zonal w1nd, i.e., q'= mQ/2(§2+S2). Some of his results appear in Fig. 1 for
zonal wave number 1. (The curves have been labelled according to the type
of free modes to whlch they correspond in IH's ploblem) On the abscissa
some values of u ‘at 45°N for the correspondlng values of q are also given.

On the or’dlnate the vertical wavelength of the waves, computed with the help
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of (11), appear for the propagating waves, i.e. e€>10. When e<10 only: the
minus sign in (11) is to be used for energy boundedness at infinity. In
that case the energy demsity decays exponentially with height but the
amplitude of ¢' can grow or decay with height, depending on which of the
two exponents dominates in (11). When the negative exponent dominates the
¢' wave decays exponentially with height and we can define a "penetration
depth" as that height at which the wave amplitude has decreased by a factor
e; the value of the penetration depth is shown in kilometres for e = -10
and -100. v

We see from Fig. 1 that for a fixed >0 a number of different modes
are possible (only a few are shown), each having its own value of e, i.e. its
own vertical scale. For example, with u(45°) = 81 ms~! we find that the
modes of the Rossby type with indices n = 1 and 2 have €>10 and are thusv
propagating waves. As in the Beta plane models these waves slope to‘thé
west with height and as seen from (11) their amplitude grows as exp(Z/2H).
The modes with n>3 have e<10 and are thus trapped modes. All modes of the
gravity type are propagating energy upward; their vertical wavelength is
relatively small and, as can be verified in LH, graﬁity modes with such large
values of € are trapped horizontally‘near the equator. So again we find that
as in the Beta plane model, for a fixed mean zonal westerly wind sbﬁe modes
are trapped and others propagate, the difference between the two being related
to their horizontal structure. The fact that we find an infinite number of
modes from the gravity wave branch which can propagate energy to infinity,
which was not the case in the Beta plane ﬁodel, is ﬁot a consequehce of the
spherical geometry but rather of our having used a primitive equétion model.

If we now look at Fig. 1 for a fixed 0<0 (q<0) we find that contrary
to the Beta plane model we have not only trapped modes in the easterlies but
also propagating modes (e>10). Again this is not related to the spherical
geometry but to the fact that we are using a primitive equation model. These
propagating modes were alsc absent from a filtered model in spherical geometry
presented by Dickinson (1968). With their large‘values’of ¢ they tend to be
trapped near the equator, except perhaps for the Kelvin wave whicﬁ has a
smaller € for a given u(45°).

We will see in the sequel that there is at least omne 1mportant '
difference between the present results and those of the Beta plane model which
is directly related to the spherical gecmetry. Before doing sc let us first

look at the structure of a few of the geopotential eigenfunctions, or Eough
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Fig. 1. e=1/2 a5 a function of qg = mﬁlz(ﬁ + ) for several horizontal

modes denoted by the index n for zonal wavenumber 1. Some values of €
are also given, as well as a few corresponding values of the vertical
wavelength for the propagating modes (e » 10) and the 'penetration
depth" for some trapped modes (r. h. s. cf diagram). u_is the value
of the mean zonal wind (m-s™!) at latitude 45° (Adaptedofrbm Longuet-
Higgins, 1968, Figs. 2 and 17). ' :
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functions. In Fig. 2, adapted from LH, we show the Hough functicns for the
Rossby wave branch of Fig. 1, for zonal wave number m = 1. For a given €
only the first four meridional modes are shown as functions of latitude.
The solutions were normalized so that all modes have the same amount of
energy over the sphere. Let us fix our attention on a given mode, say

n = 2. The figure shows how its structure changes as e changes, i.e. (from
Fig. 1) as U(45°) changes. Thus for € = 1 (the wave is therefore trapped)
the geopotential has a broad structure with a maximum amplitude near 60°.
As T(45°) decreases in Fig. 1 the value of e increases and when it passes
10 the wave becomes a vertically propagating mode. As this happens the
geopotential wave amplitude maximum moves southward.

The above change in wave structure as the speed of the mean zonal
wind changes is a feature of the spherical geometry model which was not
found in the midlatitude Beta plane model. In the latter the horizontal
structure of the geopotential is given by sinusoidal functions of y
(latitude) which are independent of uW. Only the vertical structure is
affected by u. ;

Let us now compare the strength cof the westerly wind u which is
required to trap the modes of the Rossby type in the present model versus
the Beta plane model. The comparisorn is complicated by the fact that the
latitudinal width of the Beta plane channel is arbitrary and that width is
an important parameter in the comparison. Following Charney and Drazin
(1961) we will formally replace the Laplacian in the linearized Beta plane
potential vorticity equation by its spherical geometry counterpart. The

equation is (see equation (37) of preceding notes)
2, = Wi, e a_ﬁaw
(a,t‘LMé?c[vw*' ( 7 ) +/3 ' (13)

f 22
With 3/t = 0 we get

A2 -@-li(fz 9—W>+ rgsb': 0 (14)

. PZ\N® DZ

which has solutions of the form
m LN
v = $(2)T (¢ e

with the vertical structure equation

f_ a¢7> I f— - '"("'“)J P =0 . (15)

y 'oa(w °Z 71 :

u Qa
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i " Latitude - . ‘“Latitude .

Fig. 2. Horizontal structure of the‘height field (Hough functions) -
for zonmal wavenumber 1, u = 1-4, for different values of the eigenvalue
¢ (Adapted from Longuet-Higgins, 1968, Fig. 10).
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Thus K2, the square of the horizontal wavenumber, in the original equation

(equation (40) of preceding lecture) has been replaced by n(n+l) /a?.

Proceeding as before we find that the waves are trapped for 4<0 and for
M 2 =

. S T
nin+)/ad  + §r/4n Nt (16)

The values of uc for a few values of n are shown in Table 1 in the column

"Beta plane analogue'.

We have seen that in the spherical geometry model trapping occurs
when € £10. From LH's Table 5 with € = 10 we obtain the corresponding
value of q and hence (45°) which just traps the various modes. The results
are given in Table 1. In addition the Table gives the values of ﬁc obtained
by Dickinson (1968) for a filtered model on a sphere. The latter model can
also be found in Holton (1975, p.46). The meridional dependence of the

stream function in that case is given by prolate spheroidal wave functions
K™(¢p ), which tend to Pr(¢p) =0
nq) ,» which tend to n(p as e+0.

We see from Table 1 that an exceedingly large value of u(45°) = 1583
ms~! is required to trap the gravest Hough mode H11(¢f). The approximations
provided by the other two models are quite poor in this case. In the Beta
plane analogue (BPA) model a much weaker value cof u = 94.6 ms_; is required.
As expected, for modes with a shorter horizontai scale, i.e., as n increases,
the BPA model provides a better approximation, especially for the larger

m o, .
values of n ~ m (recall that n - m = pumber of zerces of Pn in the open

interval —w/2<? <w/2). We can conclude from the comparison that both
spherical models, which account for the full variation of the Coriolis
parameter with latitude, allow waves to propagate through stronger westerlies
than the Beta plane analogue model in which f is kept constant except in the

advection of planetary vorticity.
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- TABLE 1

The westerly zonal wind in ms~! at 45°N beyond which stationary forced
modes of the Rossby type are trapped near the forcing. (Adapted in part
from Dickinson, 1968).

Zonal Two-dimensional P.E. model Dickinson's Beta plane

wave number index on sphere approximate analogue

m o S 1 , : . model

1 1 1583.0 -400.6 94.6

1 2 77.2 83.2 60.0

1 3 3.2 44.8 38.7

1 4 127.0 . 28.8 26.3

2. 2 144.9 125.0 60.0

2 3 49.2 50.2 38.7

2 4 29.6 30.0 26.3

3 3 62.4 59.3 38.7

3 4 319 26.3

4 4 35.5 26.3

5 5 23.1 . 18.8




276

2. Some Effects of Horizontal Shear in the Basic State

To appreciate how horizontal variations in u affect the propagation
of stationary forced planetary waves we will first return to the Beta plane
formulation. Subsequently we will present numerical results obtained by
Simmons (1978) using a spherical geometry model with various meridional
profiles of u.

When u = u(y,Z) the inviscid Beta plane potential vorticity equation

(above the region of diabatic heating) for a perturbation stream function of

the form »
W (x,glz):@ Q(;,Z)eb *
AT AW L 28 e -
PR (1) 0
where

2Q _ PA 4 D[k
—'o';'-ﬂ—'g"f;a‘z‘(,v.z—:g (18)
ig the meridional gradient of the basic state potential vorticity. We note
again that if G = 0 where 3Q/3y#CG, (17) is singular and it is seen that in
that case the shear (horizontal or vertical) can lead to possibly complex
and interesting effects on the wave sclution.

Let us now look at the effect of the term 32G/3y2 on the wave

propagation. Following Simmons (1974) we let
ax(y,B) = Y (y) 2(2) U, (19)
ﬁ = /50 Y(g) + COrrec‘f'n.on (20)

with Y = 0 at the southern and northern walls of the Beta plane. As he has
shown, a good approximation to the wave solution ¥ can be obtained at large
heights for typical U profiles Y(y) by keeping only the first term on the
right-hand side of (20). With this approximation (17) takes the form

SH) £ 3 Al )

P 'az( N* o
(21)

Contrary to (17) this equation is separable. The horizontal and vertical

structure equations are found by letting

Ly,z) = & (Y (2. (22)
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They are »
I AR & G A A

By inspection of (23) we see that

I.ly) = Y
e W

is a solntion.t'In'other words for that solution the meridional structure .
of the wave is the same as that ‘of G.
In Charney and Dragin's (1961) Beta-plane model where t is independent

of latltude, the vert1cal structure equation is

1 (ﬂ ){_ﬁ_LL_i(,E_f: >uz))
f. ald) M fo dE N
v (25)

where 12 is the meridional wavenumber of ¢'. By comparison of (24) -and (25)
we see that the effect of the horizontal shear in @ is to reduce the wave-
numbet in the vertical structure equation from k% + 12 to k2. ' This clearly
leads to an enhancement of the penetration of the waves forced from below.
.The same conclusion was reached by Rutherford (1969) who had also approximated
the B term.as above. Tt was Simmons (1974) who discussed the accuracy of the
approx1mat10n We note ‘finally that the result that the wave amplitude tends -
to be a maximum at the latitude where T is a maximum is in agreement with
observations in the lower stratosphere (Hirota and Sato, 1969).- It does not
quite agree, on the other hand, with observations of the middle mesosphere
(Z = 60 km) by leota and Barnett; at that altitude the observed wave ampli-
tnde maximum is north of the mean zonal wind maximum. We will return to this

point when we discuss results obtained by Simmons (1978) with a spherical

geometry model

The,singular line. We will now present some results due to Simmons (1974)
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on the horizontal and vertical propagation of forced waves in a zonal flow
containing a singular line (where % = 0). The U profile is independent of
height but varies with y on the Beta plane as shown in Fig. 3. At the

lower boundary Z = Zo the y' wave is forced by specifying w'(Zo) to have

the same meridional profile as u in 0 < y/L < 2. TFor.y < 0 he set

‘w'(Zo) = 0. The meridional cross section of the §' amplitude for zonal

wave number 2 is shown in the upper part of Fig. 4.

To reveal the influence of the singular line the wave structure was
recomputed, this time with a rigid wall at y = 0, in which case the singular
line is effectively removed from the problem. The result is shown in the
lower part of Fig. 4. It is clear that for y > 0 the results are quite
similar. TFor both models, it should be noted, the soluticn was obtained
analytically. In the model with a singular line the solutions north and
south of the singularity were connected by invoking viscous effects rather
than nonlinear effects. The results obtained with a barotropic model in
the preceding set of notes (see also Dickinson, 1968) indicate that wave
energy should be absorbed at the singular line. The singular line, acting
as a sink of energy for the forced wave, should lead to an attenuation of the
wave amplitude with height in comparisom to the case without singular line.
As can be seen from Fig. 4 this effect here is quite small. From Simmon's
(1974) discussion it seems that the difference between his results and those
predicted by Dickinson is due to the fact that the separation constant
appearing in the horizontal and vertical structure equations is not real as
assumed by Dickinson.

The above comparison may well give the impression that in forced wave
problems the troublesome singular line can safely be replaced by a rigid wall
if one is interested conly in the region of mean westerlies. Matters are not
so simple, however, as seen from Fig. 5. 1In this case the stream function
phase is also shown as well as the wave momentum flux. We see. that the
momentum flux north of the singular line is positive, indicating a flux of
energy towards the singular line. In agreement with the above the wave tilts
westward with decreasing latitude, in qualitative agreement with observations.
The solution of a model with a rigic¢ wall at y = 0 is not shown tut we can
safely expect that the reflection at the wall would lead to a zero momentum
flux at and near the wall with the necessary north-south orientation of the

phase lines. It is possible that in the region of maximum wave amplitude the
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Fig. 3, The_lafitudinél dependence of the mean zonal wind profile

used to obtain'the wave structures shown in Fig. 4 (After Simmons,
1974). A o : ‘

(a)

(b)

Fig. 4, Latitude-height section of the amplitudes of zonal wavenumbex
2 disturbances. Upper: with wall at y = -L and singular line ahsorb-

tion. Lower: with wall at y = 0, without singular line absorbtion
(After Simmons, 197&).
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Fig. 5.

(a) Mean zonal wind as a function of latitude.
of a typical height disturbance with singular line absorbtiom.

(b)

101
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(b) Amplitude
(c) Cor-

responding phase and momentum transport u'v' (After Simmons, 1974).
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wave structures with and without a wall at y = 0 would be in reasonable
agreement both in amplitude and phase since even the model with singular
line shows no wave tilt there. Near the singular line, however, the wall
would lead to a different solutiom.

When numerical methods (finite differences or expansion in basis
functions) are used to solve the singular potential vorticity equation it
is not clear how the singularity is to be handled. It has been customary
(c.f. Matsuno, 1970; Beaudoin and Derome, 1976; Schoeberl and Geller, 1977;
Simmons, 1978) to remove the singularity by introducing some dissipation.
This 1eads to wave energy absorption at the singular line and to the north—
east to ‘south-west phase tilt of the wave in the mean westerly region.

This phase tilt is in qualltative agreement with observations but it is

not clear how to formulate the dissipation to obtain quantitative agreement.
It is poésible that the nonlinear terms play a signifiéant role:near the
singular line and ihat they must~ﬂe considérédriflquéntitative égreement
with observatlons is to be achieved. ’Finally we.note that according to’
calculations by Schoeberl and Geller (1976), simply locating the 51ngu1ar1ty
between two grid points without 1ntroducing dissipative effects leads to a
wave reflection at the singuiar line (at least in the barotropic vorticity

equation).

u=u( ), spherical geometry. ATo get some further insight on the effect of
horizontal shear in the mean zonal flow on forced waves, we can turn to ééme!
results obtained by Simmons (1978). He used a primitive equafion model in
spherical coordinates (see (1) through (4)) in which the mean zonal velociEy
uis a functlon of latitude only. Such a model has separated solutlonS(
For an 1sothermal basic state the vertical structure equatlon is 51mp1e and
can be solved analytically. The horizontal structure of the solutlon was
obtained by expanding the dependent variables in terms of associated Legendre
polynomials. When a singular line (latitude) was present the series were
found to converge only if dissipation was included and so a bi-harmonic
diffusion of vorticity, divergence and temperature was introduced. |
Simmons computed the wave structures for a number of zonal wind
profiles, some of which are shown in Fig. 6. The broad jet represented bz
the solid line in Fig. 6(a) is given by | : ”
Moo= S/-nzP

may
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(@ ()

Fig. 6. Some mean zonal wind profiles taken to be representative of
(a) the upper stratosphere and lower mesosphere and (b) the lower
stratosphere. Winds are easterly in the Southern Hemisphere (Afterx
Simmons, 1978). ’ :
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with southern hemisphere easterlies of similar strength to the winter
northern hemisphere westerlies. For the profiles of.- Fig...6(b) the southern
hemisphere has broad easterlies with maximum strength of 10 to 12 ms™!,

In the sequel we will discuss only that horizontal mode which has
the greatest penetration in the vertical. Fig. 7 illustrates the horizontal
structure of that mode when the solid curve of Fig. 6(a) is used for G(¢).
It is particularly interesting to note that while the geopotential wave
amplitude is concentrated in the high latitudes (maximum at 58°N) the eddy
velocity reaches a maximum at 10°N, with a secondary maximum at the pole.

The large value of Vf at 10°N reflects the quasi-geostrophic nature of the
flow and the decrease of the Coriolis parameter with decreasing latitude.

If we follow the dashed_line in Fig. 7 we find that the wave tilts
westward by about 135 degrees from 80°N -to 20°N. This is in good agreement
with observations by Hirota and Barnett (1977) of mean monthly wave number
one (in temperature5 in winter”atdan’altitude'of about 62 km. The fact that
the maximum in the wave amplltude 11es to the north of the jet maximum is
also in agreement w1th observatlons ‘by Belmont et al. (1975) discussed by
Hirota and Barnett. N ‘ D

The horlzontal phase tllt and the accompanylng southward wave energy
flux is clearly. a consequence of the vlscous cr1t1cal layer. In his analytical
Beta plane study Slmmons (1974) had found that the wave absorption at the
critical latitude did not affect 51gn1f1cant1y the vertlcal penetration of
the wave. Here the results are qu1te different in that Simmons found the
wave to be significantly attenuated in the. vert1ca1 by its loss of emergy in
the viscous critical layer. :

When the sharper jets of'fig. 6(b) were used (typical of lower stratos-
phere) Simmons found that, as demonstrated by Matsuno (1970) and himself in
1974, the wave amplitude maximum‘tends to be‘collocated with the jet maximum,
especially for strong jets. It was found, however, that the horizontal tilt
of the wave was much too large. Simmons believes that this may be due to the
neglect of the vertical curvature in u wh1ch reduces the latltudlnal gradient
of mean potent1a1 vort1c1ty in mlddle 1at1tudes, and acts to: reduce the
southward energy propagatlon. This tentatlve explanatlon could be verlfled

by generalizing the model to allow for vert1cal shear in the mean zonal flow.

3. Propagation through Horizontal and Vertical Shear

Matsunc (1970) has studied the propagation of staticmary small ampli-



Fig. 7.  Perturbation velocities and geopotential for a zonal wave-
number 1 disturbance to the zonal flow given by the solid curve in Fig.
6(a). This is the mode with the greatest penetration in the vertical.
Note that the velocity maximum occurs at 10°M. The contoutr interval is

© 0.2 of the maximum value and the zero contour is dashed. (After Simmons,
1a78) |
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tude forced waves in a background flow varying in latitude and height. He’.
started from the vorticity and thermodynamic equatlons in spherical coordi-

nates written as

ot 2 o
( 2 5‘173&)3&5 —J_Q_Smtp(awnf) a4+ N wr =4O | (27)

'07t

where Z =V—Hln(p/p ), w = dz/dt and the other symbols are as defined in the

appendix. The vertlcal advection terms in the orlglnal momentum equatlons
have been neglected and C has been neglected with respect to 2951n¢ both
on the right-hand S1de of (26) and in the middle term of (27) The lati- ~
tudinal gradient of T, on the other hand, is kept in (26). In order to‘
obtain a potentlal vort1c1ty equation in terms of the geopotential o' o
Matsuno evaluated u', v s and g’ geostrophlcally (keeplng the lat1tud1na1
dependence of f) except in the advection of planetary vort1c1ty where he
found it necessary to add a hlghet order‘correctlonkto v' to have an

energetically consistent equation. Thus in the term v'0f/adp he used

&l AL Sing [’a(.os?‘ 2N ﬂ 7\ e E (,‘j)
her . ) :
where u = - ___l_____ I ? ¢ | (299

2 5n¢ & o9
The first term on the right-hand side of (28) is of course the geostrophic
part of v' and{the origin of the second tetm can easily be seen from
inspection of (1), the steady linearized u' momentum equation.
Elimination of w' between the vorticity and thermodynamic equations

then yields the potential vorticity equation

=~ 9 . .S‘."I(P. P) we 20 | | B£¢' L o '
'Q'B'—ki Cenip p’so("-?“-grp>+-—; - +4J2Q5m'~f’)-:‘— _a.(_ﬁ_ 2@):]

f cos’f o 02 Ut 22
29 @' " |
21T L 8¥Y o o
op wng D) © o | eo

where 3&/3? is'the>latitudinal gradient of mean potential vorticity, i.e.,

2§ _ 2a 5 > /pe 38
Y, -—I (Q-"'D. ? +31‘4n(p,a "4‘_(1& S\V\‘f’rg 32(%1:3—5))&5()0.

(31)
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We note that in the gasé where Q = constant (30) can be written as

L 2(me 28 sl gl om
cos@ DP\Sin'p ¢ o Sin'p cos'p sin'p
Lo Sy I.\ ;f_o _a¢ o : ' .
— i = . g 32
+4‘gzafobz(w‘vz o (32)

By comparison with (6), the ¢‘ equatlon obtalned from a primitive equation'
model, we see that (32) can be obtained from (6) by neglecting m9/2951n?
in comparison to 1. It is clear then that for a given 0 the‘valldlty of
(32) will break down near: the equator. As an example, if 0 is such that
u(45°) =.75 ms™* we get 9/2931n45° 0.16 and Q/ZQSln 9 =1 at 6.6°N. In
the problem actually discussed by Matsuno the breadeWn of his equatlon ‘
near the equator is probably not a serlous problem 51nce, as we w111 see,
very little wave energy reaches the troplcs.

.Let us return to the potentlal vortic1ty equation (30), in whlch the
latitude and height varlations of Q are retained If we let

Be™ ) By

“m3f

then each zonal harmonic satisfies

s'@ o ( op L 24y
cos P 'o«p( Y e ) ,[ Si ;p Py + m@ (33)
in ﬁhich

.
= = — - - =y
Qm = Seosp 29  4H°  ces'e

Qm is the 1ndex ot refraction squared for. the anlgotropic wave propagation in
the <p and 7 directions governed by (33).

k Because of the division by O in (3&), equation (33) is singular along
any line where U = 0. Matsuno removed the singularity by introducing tweo
damping mechanisms: & Rayleigh frictien in the mnomentum equations and a
Newtonian coollng in the thplmocynamlc equation., Thug the térmq —ayc' and

~a 8¢ /37 were added to ‘the . rlght—hand q1des of (26) and (27) with oy and Gl
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~ constants. In addition o, was taken equal to o, = &, with the net result

M T
that in the definition of Qm the factor 1/9 was replaced by 1/(9-ia/m).

A value of a = 5%x1077s~! = 1/23.4 days was used. It should be clear that
the new term will play an important role near the singular line where Q 1is

small, and that it will be unimportant in regioms where |@]|>>a/m.

Boundary conditions.

a) At the lower boundary Matsuno specified the observed amplitude and
phase of the zonal harmonics in the geopotential at Z = 5 km, for
January 1967.

b) At the polé the geometry imposes the condition Wm = Q0.

¢) At the equator the condition Wm.= 0 was used on the grounds that
the singular line further north would prevent the wave energy from
reaching the equator, the energy source being concentrated north
of the singular line.

d) At the top of the model, located at 65 km, a radiation condition
was used.

With these boundary condiﬁions Matsuno solved (33) using finite
differences of second order with increments of A@ = 5 degrees and AZ = 2.5
km. The mean zonal wind used to compute Qm is shown in Fig. 8. It is an
idealized distribution of © which retains cnly the main features of the
observed distribution in winter. The vertical shear was forced to zero at
the top of the model to make it possible'to use the radiation upper boundary
condition.

In Fig. 9 we have the cross-section cf the quantity QC, defined by

_ Q= Qo - m/cos’p | (35)
where Qm ié the index of fefractionvsquared for wave number m (see (33) and
(34)). It plays an important role in the propagation equation and it will be
useful to keep its distribution in mind when interpreting Matsuno's results.

The structure of Qm in (35) can be imagined from Fig. 9 if we note that

l/cosch = 4.0, 8.6, 38.3 and « at Q = 60°, 70°, 80° and 90°, respectively.

Thus Qm is negative near the pole for all values of m,

The computed wave structures Wm obtained by Matsuno for zonal wave
numbers 1 and 2 are shown in Fig. 10. Recall from the definition of Wm given

above (33) that |¥| g |3g1 |¢'| so that |¥| is proportional to the square root
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Fig. 8. Latitude—height section of the mean zonal wind (m s~ 1)
“(After Matsuno, 1970). : '
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Matsuno, 1970).



=290

" .
9 . Wi
@ [ 8l
z 3
- R | 3
H ]
= . =
» L B .
. B 3 [
| 1 I | 1 | L I
L8 £ w R 1 P
LATITURE
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2 (right). - The amplitude (m) is g1ven by the s0lid 11nes and the phase
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i -l
5.
B ol
| R T e Eet] SRR Tt SR
i KR 3 TR AP T8 nt
LATITUDE
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zonal wavenurbers m = 1 and 2 (After Matsuno, 1970).
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of energy density. The observed distribution of ¥ below 30 km is shown in
Fig. 11.

The computed phase distribution is in reasonable agreement with
observations, showing in particular the westward tilt with height indicative
of an upward flux of enmergy. Over most of the domain the horizontal phase
tilt is from north-east to south-west which implies a southward propagation
of energy. The magnitude and -direction of the energy flux were in fact
computed by Matsuno and .are -given in Fig. 12 in vectorial form for the m = 1
wave. It seemsjthat the energy flows around the area of small Qo in the
lower stratosphere, going mainly to the north of it. '

Returning to Fig. 10 we:see éhat the computed wave m'= 1ihas an
energy density which increases with height in the lower stratoéphere near
70°N. This seeﬁs to be a manifestation of some reflection taking place at
the upper levels since a pﬁrely~bropagating mode without dissipation would
have a constant}energy density - dissipation should in fact 1eéd to a decay
of energy density awéy from theﬁsthde. Matsuno was thus led to propose the
schematic picture shown in Fig.513 as an explanation for the compufed ampli-
tude maximum in' the stratosﬁhere.  The small values of 8&/3? ‘in the middle
latitudes above the f}opospﬁerinjet‘and the large values of u in the upper
levels lead to }cw véluesAof Ql'in those regionms. The low Ql fegions act as
barriers to wave propagation and hence the wave is trapped in a cavity
bounded by the ébove:regidns and the pole,}where Q1 is negativé; When wave
energy is injected from below multiple reflections on the "boundaries" of
- the cavity can take'blace'and é,standinngavé is set up. Clearly the
‘boundaries are ﬁot perfect reflectors: since otherwise the net energy flux
would vanish; in addition the model Has dissipation, a feature which for
simplicity was not included in the schematic picture of Fig. 15.

In closing our brief discussion of Matsuno's results, we should point
out that while his model reproduced thé?ﬁajor features of the observed
forced harmonics m = 1 and 2, a number of deficiencies can also be noted.
For example, as he himself remarked, the computed m = 2 wave decays too
quickly with height, and in that respect Simmon's (1974) model was somewhat
more successful. As pointed out by Scheeberl, Geller and Avery (1979) the
wave sclution is sensitive to the mean zonal wind profile so that Matsuno's
use of an idealized u distribution may preclude a detailed comparison of his
wave structures with observations. Finally it should be kept in mind that

very little is known about the amount of wave energy that is actually ahsorbed
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Fig. 12.  Computed distribution of energy flow in the meridional’plaﬁe .
for -zonal wavenumber 1 shown in Fig. 10 (After Matsumo, 1970).
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at the singular line. It is possible that Matsuno's dissipation mechanisms
overestimated the energy loss by the wave at the u =0 line, in which case

the vertical penetration of the waves would have been reduced.
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APPENDIX

List of New Symbols

q

’ DL D X O 0 2 wm 5

~~
~

ne/2(Q + %)

- Hough functidn

[NH/2a(Q + ©)12

coefficient of Rayleigh friction and Newtonian cooling in

_ Matsuno's model

separation constant
relative vorticity
potential function

earth's rotation rate

" angular speed of the mean zonal wind = u/a cos¢

zonal average of ( ), except for Q
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THE UPPER BOUNDARY CONDITION IN NUMERICAL MODELS OF FORCED PLANETARY WAVES

1. Introduction

In our discussion of forced wave models we have so far used the
classical Somerfeld radiation condition at the upper boundary. In numerical
 weather prediction and general eirculation models, on the other hand, the
- most frequently used boundary condition at the top of the model is either

= dp/dt = 0 at p = 0 or do/dt = O at o = 0, where o = (pressure)/(surface
pressure), dependlng on.whether the pressure pora is used as the vertical
coordinate. We will now look at the differences that arise in the wave
strictures of a simple model when the boundary condition w(p = 0) =0 is
used rather than the radiation condition. We will again be concerned with
stationary waves forced at the lower boundary. The presentation will be
based mainly on papers by Kirkwood and Derome (1977) and Desmarais and
Derome (1978); closely related studies can be found in Nakamura (1976) and
Bates (1977). 7

The approach will be to have two numerical models: the first, or
:eference model, employs the radiation condition at Z = 125 km while the
‘second model uses the upper boundary condition w = 0 at p = 0. Both are
Beta plane models in which the mean zonal wind u is a function of pressure
only. Stationary waves are forced in the two models by specifying the
vertical velocity at the lower boundary apd_the;wave structures are then

compared to reveal the influence of the upper boundary condition.

2. Model Equationmns
Our. linearized Beta plane vorticity and thermodynamic equations for

stationary forced waves with u = u(p) are

AR 2w’ _

m vy 7:./5 - £ 55 =0© (1)
- 9 oy JaT'r_)_!_// o oy’
I B "’7 o + f: w = -y 5? (2)

where aR(p) is a Newtonian cooling coefficient and the other symbols have
their usual meaning. The horizontally averaged temperature in the basic
-state, T , is taken to be independent of pressure, in which case the static
stablllty parameter ¢ = os(ps/p)2 where O = R2T /p p‘ P, = 1000 mb,

To = 239K.
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2.1 P model

In order to simulate conditions in several numerical weather prediction:,

models we use finite differences in the vertical, with equal Ap increments;,:- :--

to solve (1) and (2). The dlscretlzatlon follows the lines of the standard

two-level model. .~ . o o 'f,;1

The upper boundary condition is
) ~0) = 'i - : ‘ 3a
W (x, ,ﬁ-;,o) =0 (3a)
and the lower boundary forc1ng 1s spec1f1ed by

w (x,vj ﬂ"f,aJ D e:c,b(.clzx) cos%, (3b)

where k and 1 are the specified zonal and meridional wavenumbers and D 1s a
-2

constant, arbitrarily set equal to 107 9 N m” s'l.‘ The Beta plane 1s, - 4
centered at 55°N and k. and.l are chosen such. that the hor1zonta1 wavelengthsilA

(2n/k, 21/1) are equal to the length of the latltude c1rcle at 55°N and 160 ‘ t

degrees of latitude respectively. Our choice for these parameters 1sﬂ_:ﬁ.;
based on the fact that we are 1nterested in the largest hor1zontal scalee,.ry
which are the most likely to propagate vertlcally and be affected by the
upper boundary condition.

Equations (1) and (2) then have solutions of the form

Y1y, 4)

0

EP(?%) f:x‘/;(c'_kx)_chs_/; | o (4a)

(JJ' (D(’ j/ 77)

2.2 Reference Model

In the special case where t = constant > O, 4y = 0, (1) and (2) have 7
sclutions which are proportional to exp(Z/2 + iuZ), where y is a positive

constant if © is sufficiently small (propagating solution), and Z Hln(p /p).

Such solutions have a constant wavelength 1n Z whereas if p is choaen as l L
the vertical coordinate they are found to oscillate faster and faster as
p + 0. Because we wish to use the radiation npper,boundary;condltlon at

a high altitude we will use Z as the vertical coordinate in the reference
finite dlfference moael, so as to have a uniform vertical resolution, at
least in the case of/pﬁre propagation. For all cases to be discussed we
will use ZQD levels between Z = 0 and 7 laSlkm so that AZ = 0. 625 km!'

S
The.potentlal vort1c1ty equatlon ohtalned from (l) and (°) leads to the
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following vertical structure equation when solutions of the form (4a) are

considered:
Q; 2 Cd -
FA(RSE) [ (4-0)- L A (p)

au/’oaz(r ___7_Q>=O )

where Py = P exp(-Z/H), N2 = gzlcpTo =‘csp§/H2 is the square of the Brunt-

Vaisala frequency and K2 = k2 + 12,

‘Equation (5) is solved subject to the same lower boundary forcing-as
the P model but at Z = 125 km a radiation condition is used as follows.
Above 125 km the flow is assumed adiabatic and the vertical shear of the
méan flow is assumed to vanish. Under these conditions (5) has the analytic

solution

@(%) _ Bem'z +.Cem'2 '(6)'

| tjaw + (2o /W (72)

/Mo
o (NYED W (B 4 - ). (7b)

As we have seen earlier, vertical energy propagation is possible only when

where

L}

Y > 1/4. When that condition holds the solution which propagates energy
upward is chosen by setting C = 0 in (6). This results in the boundary

condition

d\P
7z -m P =0 ot 2= jaskm.

, (8a)
If v <1/4 we have trapped solutions and energy boundedness at '

infinity requires that B = 0, which leads to the boundary condition
Jd&
. " ™MP =0 o Z= 125 hm.
(8b)-

~

3. Model Behaviour with Simple Basic States
Let us first compare the solutions of our two models when u = constant =
20m s‘l, op =z 0. In this case we have y > 1/ 4 and the solution is of the

propagating type when the Somerfeld radiation condition is employed.
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The wave structure computed using the reference model is shown in
Fig. 1. The "amplitude" curves shown in sections 3, 4 and 5 refer to the
function |¥| = exp(-Z/2H) |¢|, unless otherwise stated. ‘W‘ is proportional
to the square root of the wave energy density and should be independent of
Z in the case of pure propagation. As expected the solution of the refer-
ence model shown in Fig. 1 agrees well with the analytic solutlon of (5).
The energy den51ty remains constant and the wave t11ts to the west with
height (vertical wavelength = 70 km) . »

The analytic solutlon to (5) with the present parameters may be

‘written as

A | A Lo
C(p) = B (f/fp)l‘ + C(4/¢.) SR C)

with
/
o= -t (4-0"
’ [
Mo = -3 + (# —6“)
Applying the boundary condition w' = 0 at some pressure P is equlvalent

(from the thermodynamic equation) to requiring : - ,
. 2
b (3’_?) _ o. | (10)
r L T8 e
T
Substituting (9) into (10) we get

' ‘ : )
b ()T e (T
5 )bs N '
(11)

If we take the limit Py + 0 we find that both terms tend to zero when
v > 0 so that the boundary condition w'(p = 0) = 0 in this case yields no
information. Recall from (6) and (7) that v > 0 for all propagatlng modes
and also for the deeper external (trapped) modes.

Although the upper boundary condition w'(p =0) =0 does not yield a
unique analytic solution, this boundary condition was imposed in the
numerical formulation of the P model to demonstrate its effect. It is
evident that for vy > 0 the finite-difference P model would be required to
find an approximate solution to a problem for which no unique analytic
golution ew1stq k ’ |

. The numerical sclutionms of the P model with 101 and 11 3ev;le are
shown in Tig. 1 along with the reference sclution. The presence of nodes

in the solutions is a clear indication that the numerical model has both
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an upward and a downward energy propagating part imn its solution. In other
words the upper boundary condition w(p = 0) = 0 reflects the upward
propagating energy and leads to a standing wave solution. The inter-
ference pattern created by the superposition of the components of the
solution is seen to be sensitive to the resolution of the model. By the
argument of the preceding paragraph the numerical solution cannéf be
expected to converge as the vertical resolution is increased. v

Note that except at the nodal points the phase lines are veftical,
implying that there is no wave horizontal heat flux and no;vertiéal energy
flux. This is consistent with the fact that when only vertical energy
propagation is possible, the latter is equal to Cu where C is a constant.
If the upper boundary condition forces the energy flux to vanish at the top
of the model and u # O then we find that C = 0 and the vertical energy flux
vanishes everywhere. This result does not depend on‘our having taken
i = constant; it holds for all profiles u(p) > 0. It is clear then that
in simplified models such as the one under study here the upper boundary
condition can have drastic effects on the solution. This was pointed out
in particular by Lindzen et al. (1968). TR,

If instead of a weak westerly mean zonal wind we now Lon51der a value
of u = constant sufficiently large to trap the wave, we f1nd qu1te different
results. In that case the boundary condition w'(p = 0) = 0 does.yield
informati?n in (11) when we take the limit as Py 0. Since:ﬁdw vy < 0 we
must set B = 0 to have a bounded energy density at infinity. The numerical
results (not shown here) do indeed show that the P model with!M'(p = Q) =
converges to the correct analytical sclution as the vertical resolution
increases. The reference mcdel naturally alsc has a solutioﬁ in‘véfy good

agreement with the analytical one.

4. Winter Zonal Wind o

We will now examine whether the forced wave sclution ié*éehsitive to
the upper boundary condition when the mean zonal wind varies with height in
a manner fairly typical of winter conditions. We will use theﬁ"winter"
profile shown in Fig. 2 and we will include the Newtonian cooling mechanism

~

with aR(Z) as shown in Fig. 3. The prefile of op beLween 30 ‘and 70 km is

based on computations by Dickinson (1973); below 30 km we have: agsumed that

ap decreases slowly.




304

75 T | 1 T
B SPRING
50 -
— AUTUMN
E L i
= ‘
-~ WINTER
| 25 -
0 ] ] -1 ]
40 20 O 20 40 60
u (ms™)
Fig. 2. - Vertical profiles of the mean zonal wind for winter, spriﬁg
~and autumn (After KD).
80 | T — T 1
o o 1
g 50r | 1
x
m 40T |
30 | -
20 -
10 -
() ] ] ] ] ]
0o I-0 2:0 30
156!
€ (l07s )
Fig. 3. Vertical profile of the Newtonian cooling coefficient (After

KD) .



305

The forced wave structure obtained with the reference model is shown
in Fig. &4 together with the structure computed without Newtonian cooling.
First we see that with Cp = 0 the wave is trapped by the strong stratos—
pheric winds; |W| decays with height in the upper region which acts as a
reflector, creating the nodal structure in the lower levels. When the
Newtonian cooling is included the forced amplitude is reduced and the
nodal structure is replaced by a wave sloping to the west with height.

The observations of zonal harmonic standing wavenumber 1 in January
from van Loon et al. (1973) have been averaged between 40-70°N. The
resultant vertical profiles presented in Fig. 5 may be compared with the
reference solution of Fig. 4. In view of the approximations made in the
reference model, the rather good agreement'between the computed and
observed structures is somewhat surprising.

Let us now see how the P model performs with this G(p) profile. Since
the strong stratospheric winds prevent the wave energy from reaching the
very high levels, it is possible that its reflective'upper'boundary
condition will not have a detrimental effect on the solutipn.' That this
is the case can be seen if Fig. (6) which compares the’reference solution
with that of the P model with 101 levels. Similarly we seé in Fig. 7 that
even with only 21 levels the P model gives a rather gooa solutioné From
Fig. 8, on the other hand, we find that when the vertical tesolufion
decreases to 11 or 6 levels the computéd sélutions are drastically changed.

One possible explanation for the above behaﬁiqur of the numerical
solution is that the low résolution P models do not "see"itﬁé“trapping
mean zonal winds in the stratosphere because their uppermost computational
levels are too low. To test this‘hyﬁothesis the compufatiéns have been
repeated with u values everywhere double those préééntéd'in Fig. 2. The P
model solutions appear in Fig. 9 and support the above explanation. Even
with the lowest resolution shown tﬁe forced wave is subject to an internal
reflection by an upper region of Stfong winds and the spurious reflection

at the upper boundary seems to be negligibly small.

5. Spring 7onal Winds » | 7 i
We might expect quite different results'with the "spring" Zdnél windx’:\w

profile of Fig. 2 since its very low values of t in the stratosphere

certainly allow the free upward propagation of the forced wave to infinity,

and hence to the reflecting boundary of the P model. As pointed out by
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Dickinson (1969), on the other hand, the Newtonian cooling mechanism
becomes quite effective when u is small; thus the dissipation that it
provides may prevent the wave energy from reaching the upper boundary.

If we first compare the P model solution with 101 levels to the
reference solution (Fig. 10) we find a very good agreement, implying
that the Newtonian cooling indeed dissipates the wave energy before it
reaches the top. -

The wave structures obtalned with 1ower resolutlons are shown in
Fig. 11. The 31 level model glves quite a reasonable solutlon but the
6 level model is clearly unacceptable. In Fig. 12 we show the results
obtained with the same 6 level model except that at the highest level
where ap enters the problem its value was arbitrarily 1ncreased to
2.5 x 10~® s~1. The improvement in the results is evident. It seems
then that in the case of Fig. 11 the main deficiency of the 6 level
model (in comparison to the other resolutions) is its inability to "see"

the deep dissipating stratospheric layers.

6. Discussion

It is not at all clear that the more compleX'numericalﬁmodeie used in
general circulation studies and in'oumerical weather predieiion are as
sensitive to the upper boundary condition and vertical resolution as our
linear Beta plane model. The ablllty of those models to propagate wave
energy in the meridional direction as well as vertically, the presence of
nonlinear terms and the fact that many of them have more than 10 levels in
the vertical, are all factors which may well make the spurious reflections
at the upper boundary negligibly small. Very llttle quantltatlve inform—
ation appears to be ava:lable on this subject, however. o

One study which was done with a general circulation model precisely
to investigate the effect of the upper boﬁndary condition is the one by
Williams (1976). The stationary waves in two NCAR models with rigid tops
were compared Both models used height as the vertical coordinate with
layers 3 km deep; one had 6 1ayers up to 18 km and the other 12 layers up‘i'
to 36 km. It was found that in the lowest 18 km both models yielded .
fairly similar structures for zonal wavenumbers 1 and 3. Wavenumber 2,
on the cother hand, differed appreciably in the two models, as can be seen
in Fig. 13. At (6 km, 60°N), for example, the two wave amplitude maxima

differ by a factor of about 2, showing the influence of the reflective
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boundary condition at 18 km.

7. Implications for Time-Dependent Models ,

In this section we will examine how the def1c1ency of a NWP model in
representing the stationary forced waves can lead to forecast errors.
This arises from the fact that a model which contains a time-independent
(or nearly so) wave energy source on the planetary scale, such as topo-
graphy or 1and—sea thermal contrasts, can be expected to interpret initial
atmospheric data as being ‘the sum of a forced stationary part and a free,
travelling part. If the model's stationary component differs from that of'
the atmosphere, the distribution~ofiinitial>vafiance between the free and
forced waves will be done incorrectly so that an incorrect amount of energy
will appear in the form of travelling waves. The deficienéy of the model
in representing the forced waves may be related to various factors, éuch as
incorrectly specified heat sources. In the sequel we will assume that the
deficiency arises from poor vertical resolution. ' |

We will assume that our forecast model is given by the tlme—dependent

version of (1) and (2),. that is,

a¢'_ ! :

a‘f\”{' +4¢—\7’¢ +p _{;5; | | (122)

o o, oW _dd o o 2 amy

st op TR mop " FEox TP T % O )
with boundafy condltlons

w (xyj/;_a z) =0 . (Ba

M'(lelf,:é/z‘)z 2 a'/og_/ax' (13b)

where w' is the height-coordinate vertical'vélocity dz/dt caused by the
surface topography h (x,y). With the hydrostatlc and qua31~geostrophlc

approx1mat10ns we can rewrlte (13b) as

! I »
w, = /i fl ( EY3 2° + W,

where w, = ~Pg 8 Ug Bhg/ax. The lower boundary forcing wo will have the

following form

~CD exp (ckx) oS /a"* . (14)



© 318

The model is then identical to the P model of section 2.1 except for the
addition of the 3/3t terms.
The time evolution of the model can be obtained by substituting a

solution of the form

@ (x Y £t) = (p) exp (tkex) cos /J

+ Z a, (P (/)) cx.lﬁ (ka-:_/z,( f) COSQIH
(15)
into the model potential vorticity equation. The first term on the right-—

hand side of (15) is the stationary part of the solution discussed earlier
and the second term is a sum of the various solutions to the homogeneous
system. In fact the &n's and cn's are the eigenfunctions and eigenvalues
of the model. A model with N levels where ¢' is predicted has N possible
vertical free modes (eigenfunctions), each one having development and
propagation characteristics given by its eigenvalue cn.

To initialize the model we will assume that the true state of the
atmosphere is given by the statiomary (forced) solution of the same model
with high resolution (101 levels). Thus a correct forecast is ome which
predicts no evolution in time, and that is naturally the forecast we would
obtain if we used the 10l-level model to do the prediction. With a low
resolution model, however, the flow will evolve and the difference with the
conditions at t = 0 will be the "forecast error".

To determine the constants an in (15), the initial state (reference
solution) is decomposed into a steady-state solution of a low resolution
model plus a linear combination of the eigenmodes of that wmedel. Evaluating

(15) at t = 0, cos ly = 1 we have

p(p)= bp) + ;E a8y  ao

where §' is the control solution, wf is the steady state of the low resolut:on '
model and w is the nth eigenvector. The an s are easily obtalned by matrix
inversion.

The forecast error is then

o t) - ¢l pe)

low res. refesevice

E(xp4,7)

1)

¥ p ) - $legpt=o)

low vres. low ref,
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or, with the helpeof (15), :

~
E(x,pt)= nZ{a o (1) Jexp(hx-ikid)- G (Dexpiion |
PR
The complex. phase speeds of the 6 vertical eigenmodes of a 6 level

model are given in Table 1. The negative imaginary parts. of all phase
speeds imply that all.modes decay with time, due to the Newtonlan coqllng
mechanism. The e-decay time is seen to be two weeks orflonger for all
modes. The structures of the three gravest modes are shown in Fig. 14.
Mode 1 is vertical and travels westward with a period of 8.1 days. In
more realistic models this external mode has a perlod of about 5 days
(e.g. Geisler and Dickinson, 1976) It should be pointed out that Fig.
14 glves the amplltude of the stream functlon y', not exp(-Z/2H)y' as in
prev1ous sectlons.; The _same applles to subsequent flgures. ) ‘, '

“The forecast“errors obtained with the 6 level model appear. in Flg
15 at one-day intervals up to 4 days. We find that the error wave
retrogresses with time, pointing to the likely presence of a spurious
external mode. .The amplltude of the error increases w1th helght and
especially so as time progresses. We see also that at 5 km (500 mb)
the error after 4 days is about equal to that at the top level after only
1 day.

We will now lock at the decomposition of the forecast error in;o the
model's eigenmodes. Fig. 16 shows the relative importance of the first 3
vertical modes at 100, 500 and 800 mb, at 24~h intervals up to 96h as well
as the sum of the 6 modes. The importance of the westward propagatiﬁg
mode, especially at‘SOO.and‘SOO mb is evident. We see that the amplitude
of mode 1, the external mode, increases with time up to 4 days. After 4
days its amplitude should decrease, to reach a value of Olafter 8.1 days,
the period of the mode. Consequently the exfernal mode’is predominant in
the beginning bht decreases:in importance later on as the internal modes
increase in amplitude. This can be seen mathematicelly'if we rewrite (17),

assuming for the moment that the phase speed is real, in the form

N
E(x, pT) =~ ZJZQ,,Q(M sin(lecht/a) exb (thx-ikc,t/a > (18)

In other words the amplitudes of the various modes in the fcrecast error are
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TABLE 1. The real and imagiﬁary parts of the phase speed ¢
| together with the period 2ﬂ/kcr_and the time required
for the amplitudes to decay by a factor e, —1/kci,
for the various vertical modes of the 6 level model

for winter conditions.

Mode c. - ‘Ci : k Zn/kcr —l/kci
m s“l‘ ms™! ¢ days - | days

1 -32.8 -0.28 B B o 1s

2 0.7 -0.95 38 4

3 1.2 - -2.98 2 | 14

4 3.3 -2.42 | 81 18

5 5.9 2 s Y
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Fig. 16. Decomposition of the total errcr ER at (a) 160 mb, (b) 500
mb, (c) 800 mb into its compoments in winter. The amplitude (m?s™ 1)
scale is written along concentric circles while the phase angle is giver
by the angle on the polar graph. The mode number is written between
parentheses. The origin corresponds to initial time, while the last dot
on the curve is at 96h (After Desmarais and Derome, 1978).
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modulated by sin(kc t/2) which is zero at t = 0 and after one or more
ecomplete perlods of the mode, i.e., t = Zﬂm/kC’ where m is an 1nteger..

The factor 51n(kc t/2) is extremely 1mportant in explalnlng the

weight of the external mode in the forecast error. An examlnatlon of :'“ S

the factors A w for the various modes has shown that 1t ig much smaller
forn=1 (the external mode) than for some- of the otber modes, which
‘means that at t = 0 the difference between the reference solution and the f
low resolution model's forced wave is not projected mainly onto‘the
external mode. The‘latter;?however, has such a high phase speedtthat‘it'id o
'quickly goes to a wrong phase p031tion and leads to amn error. et
~ Experiments performed with 11 and 21 levels show that whlle the ; '
forecast errors are smaller than with 6 1evels,«the1r main features are e

qualitatively similar to the ome just discussed.

8. Discu551on o v , , v
| ‘ - In closing we stress that while studies such as the above may be
‘helpful first steps in our ‘understanding of ‘forced planetary waves, they
" must be followed by more complete ones before we arrive at quantltatlve
results that are directly appllcable to NWP ox GCM models. For example it
is likely that the m1n1mum vertical resolutlon requ1red to achleve a glven
- forecast accuracy can only be determlned by performlng forecast experiments
with the complete model. '

Finally it should be kept in mind that there may be no unique and final
_answer to the problem of the upper boundary condition. Even the Somerfeld
radiation boundary condition which we have used in our reference solutions
‘must be considered an approximation. It requires that the wave solution
be known above the level ZT where the condition is actually applied numeric-
ally. In our case this meant that the mean zonal wind had to be assumed

~independent of height above 2 In addition it is not clear that the

boundary condition can be appiied if the flow near the upper boundary
becomes highly nonlinear. It is possible that the practical answer to the
upper boundary cendition problem will be to use a sufficient vertical
resolution and to place the upper computatiomal levels sufficiently high so
that (a) most of the wave energy will be absorbed or reflected back hefore
reaching the upper boundary and/or (b) the energy that is reflected by the
boundary will not reach the lower regions of interest before other forecast

errors have degraded the prediction.
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