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ABSTRACT

A variational approach to objective analysis using splines and cross
validation for meteorological applications has been described by Wahba and
Wendelberger (1980). The method can be considered as an extension of a
variational approach to smoothing spline interpolation developed originally
by Carl Reinsch in the late 1960s. The theoretical and conceptual basis of
these methods is reviewed, and some analogies drawn between their spatial
properties and properties of other deterministic and stochastic methods.
Certain properties of generalised spline (GS) analysis are strikingly
similar to those of the stochastic method known as universal kriging (UK),
which can itself be considered as generic to what meteorologists refer to
as Optimal Interpolation (OI) and the potential advantages and disadvantages

of GS over UK and OI methods are considered.

Some examples of the GS method applied to the assimilation of conventional
observations in 2-d and 3-d spatial domains are used to illustrate possible

applications in finescale analysis.

1. THEORETICAL BACKGROUND

1.1 Smoothing Splines

Reinsch (1967) considered the following 'classical' estimation problem:
given n discrete observations xj = x(tj) + zj . jJ=1,2, ... n, where x(t)
is an unknown function of an independent variable t, and zj a random normal
error with zero mean and variance sz, estimate x(t) as a linear function

of {xj}, i.e. as

~ n
x(t) = ) w, x, . (1)

At that time two classical methods were commonly applied to the above

problem. In deterministic methods, it is assumed that x(t) may be approx-

imated everywhere by a single expansion consisting of a weighted sum of
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linearly independent functions of t, such as polynomials. Having specified

such a.parametric model for x(t), the estimated model parameters (and hence

%(t)) are solved by linear regression, for which the object function to be
minimized is the sum of squared residuals between x and % on data locatibns.
In stochastic methods, it is assumed that x(t) is a random function with a
stationary covariance function V(T), where T is a. lag in t-space, which is
known or can be approximated by some parametric model. At any point t,

§(t) is obtained by finding Wj’ 7 =1,2 ... n to minimize the estimation

error variance - the optimal interpolation method, as it is known in

meteorology (after Gandin, 1963).

Both determinstic and stochastic methods involve specifying a parametric
model, either for x(t) or v(T), before (1) can be solved. 1In the case of
deterministic models, it may be difficult to find a suitable space of
functions or truncation point in the model expansion which interpolates

R (L) smoothly while adequately approximating {xj}. In stochastic methods,
a suitable model for V(T) may either not be available, or may be based on a
dubious assumption, such as that v(T) is well approximated by fitting a
model to 'between-station' covariances estimated from independent sets of

observations.

Reinsch avoided these problems by seeking a solution for X(t) which satis-
fies the requirements of smooth interpolation and approximation but which
does not involve specifying a parametric model for either x(t) or v(T).

Instead, his method involves finding a solution for §(t) which minimizes

the functional £[x(t)] given by

20 2 ~ 2
£flx(t)] = J [a_gx_(;l] at + A[l y [_%_:_X] _g? . Yz] , 2)
I'l t Il ] o )
A AB

where )\ and Yy are unknown positive constants, and S a prescribed approxi-
mation parameter. Term A expresées smoothness with reference to the
integral of squared curvature over the domain I', while term B expresses
approximation with reference to the requirement that the mean square
residual of §j weighted by 031 should be less than or equal to S. Except in
the special case where this variational problem can be satisfied by a
straight line in x,t space, the solution for §(t) turns out to be a cubic
spline in t, with n knots on data locations; and y is then identically
equal to zero. Reinsch showed that with v = 0, A could be obtained by

finding the zero of a function of A, the location of that zero being
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determined by S, the values of the observations {xj}, and by {Oj}, (see
also Reinsch, 1971). Given A, the calculation of parameters weighting the
individual terms in the cubic spline representation for X(t) is straight-
forward, and details can be found in Reinsch (1967). If g, = 0, = .... On
is a reasonable assumption, then the approximation requirement in (2) is
equivalent to requiring that the mean square residual of X(t) is equal to
some prescribed value. Reinsch's 'smoothing spline' approach is easily
extended to estimation of x(t), when t measures location in a bivariate
Euclidean space, using the 'thin-plate' spline solution obtained by Duchon

(1976) .

1.2 Generalized splines with cross validation

For geophysical applications, there are three difficulties with Reinsch's
approach to smoothing spline analysis. Firstly, even if Oj is known for
all j, then it is nevertheless difficult to specify a value for S which
should minimize estimation error variance (see Wahba, 1975). Secondly,
even if S is correctly prescribed, then the method still requires that Gj
is known, even when 0y =0, = ... Gj is a reasonable assumption. Thirdly,
Reinsch's smoothness criterion based on second derivative properties of
§(t) might not be appropriate for the estimation of geophysical fields,
even though it might be appropriate for modelling the behaviour of some

simple physical systems, such as bent beams and plates (see de Boor, 1978).

These difficulties are apparently overcome in the more generalized
approach to the variational analysis problem presented by Wahba and
Wendelberger (1980; hereafter WW). These authors again consider a
variational approach to solving for X(t), though with t replaced by the
point t = ty, t,, ... td in a d-dimensional Euclidean space.+ However,
WW define the variational problem. rather differently than does Reinsch by

seeking x(t) to minimize

Bm/\(t) 2 )\ A 2

n _ x (L AV X - X

g[x(;)]~J HT} d1_:+nZ [ S } (3)
w9t J J
B AB

where A is an unknown multiplier and m an unknown positive constant. Here,
the 'smoothness term' A has been written in shorthand form: the term in

parenthesis represents the sum of all m'th order derivatives of §(§) with

+

Solutions in a spherical curvilinear Space are given in Wahba (1981).
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respect to ali combinations of the drlocation variables; and the integra-
tion is over the infinite volume of d-space. Apart from the fact that term
A in (3) has a more general form than that in (2), we note that the approxi-
mation criterion now relates to the reguirement that the mean weighted
square residual of §j should be minimized. This formulation has the
advantage that if 0; = 0, = .... Gn is a reasonable assumption, then it is
not necessary to specify Gj, since any arbitrary scaling can be absorbed

by the multiplier A.

WW state that for prescribed positive values of m and A, this variational

problem has a unique analytical solution given by

n
x(t)= ¢ (o + ) B, x(T.) . (4)
- - = 12 I J

j._.
In (4), @(E) represents a vector of polynomials complete to order (m - 1)
in the d-location variables, and 0 is an associated vector of parameters;
B, is one of n parameters associated with the function K(Tj) where Tj is
the distance in Euclidean d-space between t and Ej' with K(T) being given
by

2m-4
T

K(T) = ¢n T, d even”

romd , dodd * .

Solution (4) can be considered as a generalized spline (GS) surface in the
sense that the piecewise-continuocus property of §(E) is similar to that of
simple univariate splines: ﬁ(g) is continuous and differentiable to order
m, but its m'th order derivative changes discretely at observing locations,
and no higher order derivatives exist at a point. Withm =2 and d = 1,
Q(E) takes the form of a cubic spline, while withm = 2 and d = 2 Q(E)

takes the form of a 'thin-plate' spline.

Given values of m and A, the parameters in (4) can be obtained by solving

the linear system

Qg +nA 26)

-

(=]
™
1%

(5)

[| e

0

1R
10

Here K is a symmetric n X n matrix of K(T) values corresponding to all pairs

of observing stations, ® is a polynomial matrix with n rows, and x the n-

* WW include a constant multiplier in these expressions; but that
constant may be absorbed in Bj, and has been omitted here.
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vector of observations. Strictly, D_ is a diagonal matrix containing G;

=0
data. However, if(If = Of:= e Oéz is a reasonable assumption, then 20

may be replaced by the nXn identity matrix.

System (5) can be solved using Reinsch's method provided that suitable
values of m and mean square residual can be specified a priori. However,
WW suggest a potentially more powerful approach based on a generalized

cross-validation (GCV) method. Conceptually at least, the cross-validation

method is based on finding m and )\ such that the square of the estimation
error [§(§) - x(t)] is minimized when averaged over all d-space. In prac-
tice, the GCV approach uses a suitably weighted sum of squared residuals
(on observing locations) to track the behaviour of estimation error
variance averaged over the available observing locations. The location of
the minimum of this GCV variable G(A,m) in G,A,m space estimates the
location of the minimum mean square estimation error. Full details of how
the GCV method may be effected numerically, together with theoretical

sources, are described in Ww.

Sample analys::s in WW demonstrate the ability of the GCV method to result
in accurate isnterpolation of the signal function x(t) when applied to
discrete noisy data simulating synoptic observations of geopotential
disturbance fields and it is not difficult to reproduce WW's results
following the numerical procedures described in their paper. WW also
suggest how the method may be extended to incorporate assimilation of

multivariate observations.

2. ANALOGIES

2.1 Variable resolution

The GS solution (4) of the variational problem (3) may be written concisely
as

x(t) = 1) + k(LB . (6)

M S

An important property of this solution is that as HE - Ej” becomes large
for all Ej' term S tends to zero. Hence Q(E) always relaxes onto an
'infinitely scooth' polynomial surface M both in observation-sparse regions
of t-space an¢ outside the convex region enclosing observations. Whilst
that property does not guarantée that Q(E) has reasonable extrapolation
properties (ﬁ(t) is not generally the same as a least squares estimated

polynomial trend surface), it does at least mean that %(t) and its
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derivatives tend to be reasoenably smoeth along boundaries enclosing the
observation space. Furthermore, the above result implies that term S can
be thought of as a 'short-range' component of %(E), which provides more
information about the derivative structure of x(t) in regions of enhanced
observation density. (Notice that although the differentiability of §(E)
is limited to { m at a point, higher derivatives can be estimated via finite
differencing provided that the differencing interval is greater than the
local 'mean-station-separation'). Hence GS analysis provides a form of
variable resolution analysis in regions where observations are not distri-
buted homogeneously and is, in this sense, analogous to some successive
approximation methods (following the approach introduced by Cressman, 1959);
except that unlike successive approximation via a distance weighting
formulation, GS analysis is optimally formulated with respect to a least-

squares criterion.

2.2 Kriging and OI

A more specific analogy exists between the GS solution (6) and the solution

provided by the statistical method known as universal kriging (UK) developed

originally by Mathercon (1970), who also later noted a similarity between UK
and spline analysis (Matheron, 1981). In UK x(t) is considered as a purely
random function consisting of a stochastic trend or 'drift! u(t) plus a
spatially stationary stochastic component x'(E) the correlation scale of
which is smaller than the scale of the convex region enclosing observations.
Subject to a suitable choice of parametric model for H(t) and covariance
model for x'(g), the UK solution minimizing estimation error variance can

be written as

x(t) = {(t) + v+ Dz -0 (7)

where ﬁ(g) is the estimated drift component, Y(t) a vector of 'station'-to-
gridpoint covariances, and (V + D) the observation covariance matrix wherein
D is a diagonal matrix of the observation error variances {O;}. The GS
solution takes a similar form if (5) is used to substitute for @ in (6),

leading to
X(8) = () + k" (B (k+ DA "x - ) (8)

where ij) is again a diagonal matrix, the elements of which depend on A

and the relative magnitudes of the observation error variances {O;}.
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Comparing (7) and (8) suggests that the functionk(T) in the GS solution
models the short-range covariance function V(T), though actually K(T)

behaves more like the short-range variogram function N(T) (or “"structure
function"bas it became known following Gandin, 1963) which is related to

V(T) by
n{t) = [v({0) - v(m)l .

The above analogy points to both the essential similarity and difference
between the UK and GS methods: in UK, the success of the analysis in
recovering x(t) depends on correct specification of a parametric model for
H(t) and v(T), though the former might not be critical in practice. 1In GS,
via the GCV method, the success of the analysis depends on there being
sufficient information in a single realization of the sampled spatial

process to provide suitable values for m and A.

Universal kriging can be considered as generic to meteorological optimal
interpolation (OI) analysis of univariate field data in the sense that in

OI u(t) is assumed to be zero for all t, or, equivalently, that ﬁ in (7)

can be replaced by a forecast datum xf and V(T) by a covariance mocdel for
the increment variable (x - xf). If reliable values for V(T) and 0? are
available, then neither UK nor GS methods appear to offer any advantage over
OI. However, it is worth noting the following potential weaknesses of OI

which might be particularly relevant to the problem of finescale analysis:

I. Even if a prescribed covariance model V(1) is & good approximation to
V(T), OI does not necessarily return a minimum variance estimate of x(t)
when the analysis 'box', i.e. the region containing the n observations
defined by (1), has a spatial scale not much greater than the correlation
scale of V(T), the reason being that under these circumstances the obser-
vation covariance matrix tends to be ill-conditiocned, and its inverse

relatively sensitive to small errors in G(T).

II. OI cannot be expected to interpolate highly anisotropic field
structures faithfully if its formulation is based on averaging statistics
from independent sets of observations. (The latter process inevitably

tends to suppress the effect of anisotropy except in a climatological sense).

ITT. The assumption that sufficient averaging of covariance data leads to
reliable estimates of V(T) may be highly dubious in the context of fine-

scale analysis, where 'unusual' structures, such as frontal regions, are
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unlikely to be represented in an unbiased way in the forecast field data.

With regard to point I, both UK and GS offer a solution: by incorporating
a trend of 'drift' component in the explicit (for UK) or implicit (for GS)
‘data model, the éorrelation scale of the residual field {x(t) - u(t)} must
be smaller than that of the total field {x(t)}. This means that the final
analysis should be relatively insensitive to errors in the explicit (for
UK) or implicit (for GS) model for the short-range component x” (t), provided
that the large scale trend model accounts for an appreciable component of

the total observed variation in {xj}.

With regard to point II, UK and GS represent only the short range component
x”(t) via an explicit or implicit isotropic structure function. The drift
or trend component can represent any degree of larger-scale field aniso-
tropy which is 'left over' by the estimated short range structure. WwW

have furthermore suggested that the GS method could be formulated to dope
with field anisotropy on all scales by suitable rescaling of spatial

coordinates, this scaling having been optimised via the GCV method.

With regard to point III, GS has a potential advantage over UK and OI in
relying on only one realization of a spatial process in arriving at an
optimal interpolation of the signal field x(t). Whether or not that is a
real advantage in practice will depend on the nature of the field being
sampled, and on the density of sampling points. At present there appears.
to be no objective means of estimating which approach is likely to yield
the best interpretation of an interpolated field structure for a given
sampling situation; in diagnostic case studies, we may have to rely on

subjective evaluation of the competing analyses.

3. PRACTICAL ASPECTS AND EXAMPLES

3.1 General

Although the GCV method provides in principle an estimate of the best GS
model approximating the sampled data, practical experience suggests that
there may be a tendency for the noise/signal variance parameter A to be
underestimated by this method if there is insufficient sampling of the
observed field structure within the domain of interest. Fortunately, it
is found that the GS analysis is relatively insensitive to the prescribed
value of m in (3) (as noted by WW), so that the GCV estimate of m is

probably not critical for many meteorological sampling situations.
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Furthermore, the numerical procedure for solving a GS surface described in
WW can easily be extended to incorporate the principle described in Reinsch
(1967); algorithmically, the two methods differ only in the method by which
A is estimated. .Consequently, it is easy to override a GCV estimate of A

in favour of one based on a prescribed value for rms residual with little
extra computational effort. In practice, it might often be desirable to
impose some ‘extra smoothing' in order to suppress coherent but small-

scale features from the analysis, and for this purpose Reinsch's method

has the obvious advantage over GCV.

3.2 Scalar map

Figures 1 illustrate GS surface analyses applied to 1000 mb height data
derived from 132 synoptic m.s.l. pressure reports from stations lying
within 500 km of map centre. Points to note about the raw data are that
they sample a highly anisotropic field structure and are distributed non-
uniformly over the area of interest. The GCV method results in the analysis
shown in Fig. la. The interpretation of the pressure field in the wvicinity
of the surface front (marked by the dashed line) is quite similar to that
usually employed in a subjective analysis, in which fronts are often drawn
as first order discontinuities in the pressure field. However, elsewhere
the GS and GCV analysis results in rather less smoothing than that usually
effected by subjective analysis. In this case one feels that GCV under-
estimates the optimal degree of smoothing, as evidenced by the somewhat
unrealistic derived geostrophic vorticity field shown in Figure lb.

Figures lb and lc illustrate the effect of increasing the smoothing by
prescribing the rms residual following Reinsch's method. Notice that
despite the considerable degree of smoothing which results when rms = 5 gpm,
the essential anisotropy of the height field in the vicinity of the frontal

zone has not been lost.

3.3 Vector map

A GS analysis can also be applied to vector field data, either by assimi-
lating components quite independently, or by using common A,m values
determined from the minimum of a GCV variable obtained as a function of the
rms vector error before fitting GS surfaces to the component data. Both
approaches assume implicitly that the vector observing error has an rms
value independent of direction, but the latter method is computationally
more efficient. Figure 2 shows the result of this method applied

to surface (10 metre) wind reports. (Here it has been assumed that surface
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Figure 1. GS analysis of 1000 mb height field, with derived
geostrophic vectors and relative vorticity (s—1).
(a) is via GCV; (b) and (c) are with prescribed
r.m.s. residuals.
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wind error is proportional to reported wind speed, so that 20 in (5) has
not in this case been replaced by an identity matrix.) Despite the
relatively high noise level of surface wind observations (arising largely
from local effects on scales smaller than the between-station separation
scale), the resulting GS analysis provides a relatively smooth and
convincing interpretation of the 10 metre kinematic structure associated

with a surface front.

A method of GCV vector spline analysis on a sphere incorporating
constraints on the relationship between velocity potential and stream-
function variables has been developed by Wahba (1982). However, I have no

experience of that method applied to real observations.

3.4 Scalar/Vector analysis in 3-space

The GS formulation is easily extended to the estimation of fields in a
3-dimensional Euclidean space. Figures 3 to 6 show some vertical sections
derived by this method applied to all standard and significant point
reports from 16 upper-air stations in and around the British Isles
(involving up to 275 input data between 1000 and 250 mb). The GCV method
was applied in the analysis of potential temperature and equivalent poten-
tial temperaturé fields resulting in rms residuals of just under 1 K.

Wind component data were analysed to result in a root-mean-vector residual
of 1 m s™1, the GCV method having returned an unrealistically small value
of the noise/signal variance ratio parameter \A. For this type of analysis
it is necessary to carry out relative scaling of coordinate variables in
order to ensure that the vertical component of short range variation has a
similar scale to its horizontal component in the transformed location space.
In these experiments the magnification of the vertical coordinate scale
(ICAO height) was fixed at X 100, though WW have suggested that an optimal
scaling might be derived using the GCV approach.

Despite the relatively coarse sampling in the horizontal domain, these
examples illustrate the ability of the GS analysis to resolve subtle
variations in cross-sectional structure along a frontal zone (Figure 3).
The cross-section fields of derived quasi-geostrophic variables in Figure
4 (ageostrophic forcing or 'Q-vectors' in the cross-frontal plane and the
total geostrophic frontogenesis fields) reveal structure on a localised
scale, consistent with a frontal-scale development. Figure 5 shows a

vertical section of horizontal wind divergence derived directly from the
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Figure 3. Cold front sections derived from GS analysis of synoptic UA data.

Latitude, longitude values refer to centre of section orientated
normal to surface front. 8, (dashed) every 2K. u and v in m s-1.
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Figure 4. Q-vector components (m? s—? kg-l) in section and geostrophic
frontogenesis function (10-1* x? n-2 -1 superimposed on 0
(every 2K). Other details as in Fig. 3.
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Figure 5. Horizontal wind divergence (10-° s-1) superimposed on O
(every 2K). Other details as in Fig. 3.
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Figure 6. Humidity flux through cold front section (g m~2 s—1)
derived from GS analysis of log (specific humidity)
and wind component data, superimposed on Ge (every 2K).
Other details as in Fig. 3.
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vector wind field analysis: although the vertical distribution of diver-
gence is not everywhere realistic, the divergence profile within the cold
front zone is reasonably well balanced, and indicates a change from ascent
(maximum 0 ¥ 15 Wb s~!) to descent (maximum w = 15 pb s~1) taking place
over a horizontal distance of the order of 300 km, again consistent with a
relatively high resolution analysis of the structure of a cold front zone.
Figure 6 shows a vertical section of specific humidity flux into the plane
of the section derived via the wind field analysis and a GS analysis of log
specific humidity, the latter having been derived using Reinsch's approach
with a prescribed rms residual equivalent to 10% of the observed specific

humidity.

4. CONCLUDING COMMENTS

Surface or hypersurface spline analysis of spatial fields sampled by
scattered noisy observations appears to be well suited for exploratory
analysis where an optimal balance between smoothness and approximation is

a primary analysis goal. In the absence of a prior covariance model for
the sampled data, Wahba and Wendelberger's generalized cross Validétion
approach to an optimal spline analysis could be superior to universal
kriging or OI methods, though their method does appear to require a large
number of independent observations of the sampled field if it is to result
in realistic smoothing. However, there is no such limitation if Reinsch's
smoothing spline method is used to estimate a suitable value for one of the
two 'tuning parameters' required in Wahba and Wendelberger's formulation.
Compared with other methods for interpolating meteorological. fields, spline
surface analysis with cross validation is numerically expensive and as yet
untested for very large amounts of data (n » 300). However, it has obvious
possibilities in diagnostic analysis of sub-synoptic scale events based on
fine-scale observation nets, for which it might be difficult to prescribe
suitable prior covariance models for the observed or forecast increment

data.
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