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1. OBSERVATIONS

In general, stationary waves are defined with respect to an available data
set and with respedt to a season or a month. Nowadays typical data sets span
10-20 years of observations and January appears to be a favorite month for
model-data intercomparison. The "observed" January stationary wave pattern
is arrived at by averaging over all days in January on record. In Fig. 1

we show the stationary 300-mb height field in January as obtained from the
DWb-data set for the years 1967-1981. By and large the pattern is fairly
smooth with just two pronounced troughs. Typical amplitudes of the

stationary waves are of the order 150 m or so.

Mi{telwert
_____—1967-1981

Fig. 1 January mean 300 hPa height (gdm) for the years 1967-1981.
Analyses of the German Weather Serxrvice. Adapted from Fischer

and Storch (1982).
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As is well known there is considerable. interannual variability of the aver-
age mean flow patterns for individual Januaries. Fischer and Storch (1982)
pointed out that the stationary pattern shown in Fig. 1 is not typical of
individual months. In Fig. 2 we shoﬁ January mean patterns for years where
the deviation from the long-term mean was particularly large. In all these
yvears the flow pattern over Central Europe deviated considerably from

the long-term mean field and there are remarkable shifts of the main
troughs. January 1983 provided another example of a large deviatiocn
(Stoxch, 1984). On the other hand, the méin troughs never disappear so

that there is always a certain similarity of individual fields to the long-

term mean.

Fig. 2 January mean 300 hPa height (gdm) fof‘§ears where
deviations from the long-term mean in Fig. 1 were large.
Analyses of the German Weather Service. Adapted from
Fischer and Storch (1982).
In Fig. 3 we show the standard deviation of 30-day mean data in winter.
It is seen that the standard deviation over the oceans is almost as

large as the amplitude of the standing waves in Fig. 1.
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All the theories of stétionary waves which have been proposed so far aim
at an explanation of the long-term mean pattern as depicted in Fig. 1.
This is somewhat surprising since these mean fields are hardly ever
observed in an individual month (Fischer and Storch, 1982). They are to
some extent artifacts of.the averaging procedure, One may wonder if such
mean patterﬂs can be explained by theories which neglect this aspect.
What one would like to have is a theory of quasistationary waves which

is capable of explaining alsoc the interannual variability. Thus it is not

only Fig. 1 which needs to be explained but also Fig. 3.

Fig. 3 Standard deviation of the 500 hPa 30-day mean stream
function in winter. The map is based on 18 winter months.
Analyses of ECMWF. After Metz”(198&9.Planetary modes only.
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This lecture is organized as follows. First (Section 2) we discuss the
general problems to be solved by a theory of quasi-stationary waves. Next
we describe the conventional approagh (Section 3) and discuss related
problems and results. Extensions of the conventional approach towards a
more general theory of quasi-stationary waves are described in the
following section. To restrict the scope of the paper we shall consider

only quasi-stationary extra-tropical motions.
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2. Theoretical approach

For 1llustrat1ve purposes we assume that the atmospherlc large—scale
c1rculatlon is governed by a qua51—geostrophlc potentlal vort1c1ty

[
equatlon

X -¥)q =z -dq+F o (2.1)
('m;+ ~ E’)q 9 S , , :
where g is a potential Gofticity, 1y the corrésponding streamfunction,
so that v = kx\?ﬂ{ , d a damping constant and F some kind of forcing.
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Since we want to study slow motions it is appropriate to perform a Fourier

transform in time = bo
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Motions with frequen01es|g3kwg wiil\bé'calléd*Slow or quasi-stationary.
In particular, the 1nterannual varlablllty of monthly means is slow if
ws}, 2T /30 days 1. Motions wq.thlu:() v will be called transient. In

what follows we shall consider slow motions only.

It is obvious from (2.3) that motions of all time-scales contribute to
the dynamics of slow motions. The internal dynamics of slow motions

contribute the term. .
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to the interaction integral in (2.3)} The interaction of slow and

transient motions is described by .

Ia_= SV'VQ AQ . (2.8)
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and, finally, there is the interaction of transient motions

N A {
I, = .fv-zq s (2.6)
lwsaw'| >y
lws tust] 7 Wy

Thus

. A
in*I.‘*I:L*Ia‘-'-‘ "'OL&“'F (2.7)

forluig Ly - A comprehensive theory of slow motions would have to come up
with a solution to (2.3) for a given forcing. Such a theory does not exist,
of course. In what follows we try to relate work on quasi-stationary waves

to this general frame work.

3. Standard approach

There is a highly developed branch of the theory of slow motions where
certain approximations are traditionally accepted. Since excellent reviews
have been written on this topic (e.g. Held, 1983) it may be sufficient

to list the main assumptions underlying this approach and to briefly

discuss the main problems and results. Main assumptions are

i) It is sufficient to consider motions with ) = O.

ii)} The interaction term 13 is neglected as are wave-wave inter-
actions in Il'

iii) The basic equation (2.3) is linearized with respect to a:

zonal mean state E.

The corresponding equation reads
a-aal - c' Bq’ - d—aq “ FI . 5 1)
L} ¥y -

where E is the zonal mean flow linked to a. The primes denote perturbations.
A solution of (3.1) can be achieved by standard methods. In particular,

the dependence on x is separated out:

Al - .
3 Onwz 0= Z A (¥,2) expliku¥) (3.2)
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where km is a zonal wave number.
To'solve (3.2) one has to specify the boundary conditions. The orography
enters at the lower boundary. In almost all theories worked out so far one

relies on a.linear lower boundary condition where the vertical perturbation

velocity w' at the ground is assumed
=Wy, )M .
w'= Wy, 0) (3.3)
o)
and h is orography. It is well know that (3.3) is highly problematic.
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Fig. 4 Top: Winter meansurface winds (arrows) .over smoothed
Himalayan topography. Bottom: Winter mean pressure
coordinate vertical motion in 10—3 mbs_l. Hatching denotes

areas of ascending motion. After Murakami (1981).

Fig. 4 gives the winter mean surface winds in the Himalayas as derived
from observations (Murakami, 1981). Although even this pattern is highly
idealized it is immediately obvious that the surface winds are not zonal
as is assumed in (3.3). The "observed" vertical velocity fielé differs

strongly from what is given by (3.3).
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At the upper boundary one would prefer to have a radiation condition

in order to avoid the spurious reflection of energy caused by the rigid
1lid condition used by many authors (see Chen and Trenberth, 1985, for a
review). Another solution to this problem is to place the upper boundary
at large heights. If some damping mechanism is built into the theory one
can eliminate the spurious reflection this way (e.g. Jacqmin and Lindzen,

1985).

The specification of the forcing is also quite problematic. One would like
to include heating due to fluxes of sensible heat at the ground, to

release of latent heat and due to radiation. The corresponding distribution
of heat sources is not well known. As has been pointed out by Webster
(1981) the forcing is not independent of the stationary motion itself. It
should be noted, however, that all the problems mentioned so far must

be faced also by more general theories which do not rely on the specific
assumption i)-iii). There is, however, a set of problems which is clearly
linked to these assumptions. First of all, one does not really know

to which observations the results ought to be compared. As has been pointed
out above, the long-term average as obtained from the observations is
atypical and cannot readily be identified with the solution of (3.1).
Second the mean distribution of the potential vorticity may be unstable

to small perturbations. This instability is suppressed since we require
w=w_-= O. One may argue that it is these instabilities which support
through their transports of heat and momentum the mean state Eﬂ Moreover,
these instabilities are linked to transient phenomena. It is, however,
questionable, i1f we can disregard this instability altogether. Next,

there is considerable evidence that the interaction term I, and wave-wave
interactions in I1 are not negligible. We shall come back to this point

in the next section. In a model equation like (3.1) there is exist critical
lines. These are the lines G(y,z) = 0. Reflections may occur at critical
lines as well as absorptions. Moreover, nonlinear effects appear to be
important. It is generally agreed that critical lines are of fundamental
importance to the solution of (3.1) (e.g. Held, 1983). It is, however,
doubtful how one ought to identify critical lines in the atmosphere.

After all, the atmosphere is a turbulent medium with constantly changing
winds. Planetary waves may experience the gradual shift from a westwind

regime to a eastwind regime on the globe in a manner which may differ
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fundamentally from what is assumed in the steady-state equation (3.1).

Given all these problems and ambiguities one might think that the standard
approach is fairly hopeless. This is, however, not correct. Quite to the
contrary work based on the standard approach has produced results which

bear relatively good similarity to the observations.

As an example we show results published quite recently by Jacgmin and

Lindzen (1985). These authors solved the linearized primitive equations
on the sphere for motions with @ = O using a fairly good resolution in
the latitude height‘grid (1o latitudex 1 km height). In Fig. 5 we show
the perturbation height field for zonal wave number one as computed and

as observed.

AMPLITUEE
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Fig. 5 Bmplitude of the zonal wavenumber one height field (m) in
January (a) as calculated by Jacqmin and Lindzen (1985)
and (b) as observed (v. Loon et al. 1973). Northern

hemisphere.
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In the troposphere the model predicts maximum response at 70° N whereas
the observed maximum is at 45° N. Calculated amplitudes are of the right
oraer of magnitude but the tropospheric response south of 30° N and to
the north of 60° N is overestimated. The calculations for wavenumbers two
and three are even better. In Fig. 6 we show the calculated perturbation

height field at 10 km to be compared to Fig. 1.

Fig. 6 Calculated January perturbation height field (m) at
10 km after Jacgmin and Lindzen (1985).

The model's primary deficiency is its intense high over the Ateutians.
However, the main features of the observed distribution are captured by
the linear model. The model output may be even more close to the

January mean field in 1969 (Fig. 2) than to the longterm average. The
overall satisfactory agreement is difficult to understand in view of
the arguments presented above. It must be kept in mind, however, that
the model is tested against one case only. Moreover the construction of
the zonal basic state is in part by trial and error (Jacqmin and Lindzen,

1985).

4, Extensions to the standard theory

What one would like to have is a probabilistic theory of slow motions

which predicts the probability to find, say, a certain January mean
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pattern. It may be possible to write down the corresponding equations
for the probability distribution. It is, however, unlikely that these
equations can be solved. Moreover, much of the information needed to
specify these equations is lacking. However, there have been sevéral
attempts to relax some of the main assumptions underlying the standérd

theory. We shall try to briefly review some of this work.

a) "Forcing" by transients;ags = 0.

It is difficult to include the interaction of transients with the
stationary field in a theory of slow motions. Though West and Lindenberg
(1984) presented an interesting analysis of the problem there is little

hope that the term I, in (2.7) can be "parameterized" in terms of the

3
quasi-stationary fields. (see also Barnett and Roads, 1986).

_Holopainen (1978), Lau (1979) and others evaluated the term I, using data.

; 3
It appears that I. cannot be prescribed as a forcing term in (2.3).

Holopainen (1983)3computed the enstrophy budget of the stationary waves

and showed that the transients remove potential enstrophy from the
stationary wave field. Of course, a "forcing term" should not act as a

sink of enstrophy. However, one need not reject the idea of a forcing by
transients althogether. Most of the energy of the stationary waves resides
in the planetary scales. At such large scales the barotropic part of

the motion contributes little to the enstrophy. It is the temperature,

i.e. the baroclinic part of the motion,which dominates potential enstrophy.
Thus Holopainen's result means that the baroclinic part of the stationary
waves is not forced by the transient eddies. This has been confirmed'by
Miller (1986). On the other hand Egger and Schilling (1984) provided
evidence that slow barotropic motions are indeed forced by transients. Metz
(1986 a) computed the steady-state planetary-scale response of a barotropic
atmosphere to the forcing by synoptic-scale transients. The result is

shown in Fig. 7 and may be compared to the observed barotropic stationary
wave field. The amplitude of the forced waves is about the same as that of
the observed ones and most of the observed features are seen in the
computed fields as well. The model's primary deficiency is its intense low
over Europe. This agreement is difficult to understand in view of the fact

that mountain forcing and heating are neglected. It must be kept in mind,
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however, that the model is tested against one case only. Similar
computations have been made by Youngblut and Sasamori (1980) and
Opsteegh and Vernekar (1982) but these authors did not separate

barotropic and baroclinic effects.

(a)

(b)

Fig. 7 Planetary scale stationary wave field in winter (a) as
obtained . from integrations of the linearized barotropic
vorticity equation with observed forcing by synoptic-scale
transients and (b) asvobserved (vertical mean). After Metz

(1986 a). Stream-function in 1O6mzs—1.
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We conclude that the evidence as to the detailed effect of the transient
motions on the long-term mean stationary fields is conflicting. There is,
hoWever, little doubt that the transients have a strong impact on the
structure of the standing waves (see also Hendon, 1986, where this
conclusion is supported by numerical experiments). There are indications

that the transients may destabilise the stationary waves (Held et al. 1985).

b) Forcing by transients;&lsj>CL

Egger and Schilling (1983, 1984) and Metz (1986 b) suggested that a large
fraction of the observed slow variability can be understood as- a

response of slow barotrope planetary modes to the forcing by transients.
They solved the barotropic version of (2.3) whereby 13 and 12 where
prescribed according to observations. Similar techniques have been used
by Metz (1986 c) to study the variability of monthly means. In Fig. 8 we
show the computed standard deviation of the barotropic monthly mean
stream functions for the winter season. Except for the predicted center
of variability at 120° W, 75° N the agreement of the theoretical result
with the observations is quite good. In particular, the location of the
maxima is simulated quite well. Obviously, the forcing by transient
motions has a pronounced impact on the barotropic monthly mean flows.

If similar techniques are used to study the forcing of the baroclinic
part of slow motions by transient eddies the result is negative. The
forced baroclinic motions are relatively weak and have little in common
with the cbserved baroclinic flow component (Miller, 1986). As has been
mentioned, this failure is due to the fact that there is a transfer of
enstrophy from the slow planetary-scale baroclinic modes to the transients
which cannot be modelled as a forcing of the planetary scales. It is the

reverse for the barotropic modes (Egger and Schilling, 1984).
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Fig. 8 Standard deviations of the barotropic stream function of
monthly means as obtained from a linear barotropic vorticity
equation where planetary modes are forced by synoptic-scale

6 2

transients (in 10 m 5_2). After Metz (1986 c).

Kok and Opsteegh (1985) looked at an individual event in order to find out
about the relative importance of mountain forcing, transient forcing and
diabatic heating. They considered the 1982-1983 El Nino and solved the
steady state form of (2.3) for six consecutive seasons. Again 12 and I3
were prescribed according to observations. In Fig. 9 we show the standard
deviation of observed and simulated anomalies in the zonally asymmetric
part of the seasonal mean zonal winds for each of the six seasons. It is

clearly the response to the transient forcing which is most important.

Mountains appear to have played a minor role during that event,
All this demonstrates that the mean pattern of individual month or seasons

cannot be understoocd without taking the impact of transient motions into

consideration.
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L - = .A an. mountain response

Q O an. transient eddy response
"""" an. diabatic heating response
- — — - response to all available forcings
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Fig. 9 Root mean square (rms) of observed and simulated anomalies
in the zonally asymmetric part (m=1 to 6) of the seasonal
mean zonal winds (ms_l) for each of the six seasons of the

1982-1983 El Nino. After Kok and Opsteegh, 1985.

c) Transient mountain forcing; w_ > 0.

In the context of the linear theory transient mountain forcing can arise
through a time variability of the zonal wind ?J in (3.3). The corresponding
variations of w provide time dependent sources and sinks of vorticity at
the mountain slopes. The power spectrum of the zonal wind is almost red
(Schilling, 1984 ). Therefore most of the response to the variations
of U will reside in the domain of slow motions with wg Qs. Monthly mean
fields must be influenced by this mountain forcing. A first attempt to
assess this effect has been made by Egger (1984). The linear barotropic
B-plane equation has been solved with transient mountain forcing where the '
variability of T has been chosen according to observations. It has been
found that the Himalayas were the only obstacle where this kind of effect

could be important. However, most of the computed variability has been
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found in the lee of the Himalayas, in an area where there is little

observed Variability on time scales of a month and more.

The computations have been repeated with atmospheric data instead of
artificial data as in Egger (1984). First the zonally averaged flow

?;(y,t) is prescribed in the linearized barotropic vorticity equation
T oy, T ey -~ -4 U
%E(VV\ Jy +M&V%‘+JC%H.I~/H«.¢\+M-§)L:H = AV% (4.1)

on a day-by-day basis according to analyses by ECMWF. For the sake of
convenience (4.1) is written in Cartesian coordinates but the actual
computations have been made on the sphere. In (4.1) q,' is the pertur-
bation stream function in this linear problem and f\_l is a radius of
deformation. The vorticity equation (4.1) has been integrated throughout
the winter 1980/1981 with'a (v,t) as the observed zonal mean flow at

300 hPa. In Fig. 10(a) we show the response for February 1981 data to
a mountain of similar shape and location as the Rocky Mountains. We obtain
the familiar picture of wave trains emanating from the "Rockies" towards
the Tropics and also towards higher latitudes. The variability of this
pattern from month to month appears to be weak. The trough in the lee of

BmZS_I for December

the obstacle, for example, had a minimum of -0.21 x 10
1979 and of -0.22 x 1O8 for January 1981. This corroborates the earlier
finding that the variability of monthly means as produced by variations
of orographic forcing linked to the zonal mean winds are small. We can
go one step beyond (4.1). Let‘fb (x,v,t) be the obéerved 300-hPa stream
function in the winter 1980/81 and ¢ ' the perturbation induced by the

mountain. Then the perturbation Y ' is obtained from

1)

E(V"— A 4 Ity Vo +foh /R) + (e, \7‘%\«0 = A \7%’ (4.2)

o

Note tha£ we have a nonlinear equation for Y '. The mountain term

J(\Po, foh/H) induces waves as in (4.1) but these waves now havé to move
in the observed flow field. This allows us to estimate the impact of
transient two-dimensional motions on the evolution of slow orographically

induced motion.
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Fig. 10 Barotropic monthly mean stream function response to the
"Rockies" (in 1O6m25_1) as obtained (a) from (4.1) for
observed U and (b) from (4.2) for observed ‘¥ o Data
from January 1981, at 300 hPa; global domain of inte-

gration.

In Fig. 10(b) we show the mean stream function for January 1981 and for

the same mountain as in Eig. 10(a) but we clearly now:have an
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"instability". The monthly mean pattern of the response has enormous
amplitudes. An inspection of the evolution of this pattern in time shows
thét this pattern has been growing from December to January. We have

here another example of the instability of the observed 300 hPa flow
detected first by Simmons et al. (1983). In such a situation there is
little point in searching for the quasi-stationary response to a mountain.
Moreover it is doubtful what conclusions to draw from Fig. 10(a). Is it
really meaningful to study the wave response to a mountain in a zonally
averaged mean flow when there is instability if we do not average the
observations? On the other handAthe relevance of this instability to

atmospheric flows is not obvious.

5. CONCLUDING "REMARKS

The theory of quasi-stationary waves has not yet reached a stage where
there exist generally accepted explanations for most of the observed
phenomena. Quite to the contrary more and more problems come up with
ongoing research. For example, the interannual variability of the
quasi-stationary waves and the impact of transients are aspects of the

problem we are just beginning to explore.

Most of the results presented in this review are theoretical, i.e. they
are derived by solving equations. It appears, however, that diagnostic
methods became increasingly important in stationary wave research. For
example, Plumb (1985) generalized the Eliassen-Palm flux to three
dimensions and applied this concept to quasi-stationary three-
dimensional patterns. His results appear to indicate that mountains .

play a relatively small role in estabilishing the quasi-stationary waves.
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