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1. INTRODUCTION

In recent years much effort in the field of computational fluid

dynamics has been invested in approximately solving evolutionary
conservation laws where discontinuities in the solution constitute a very
important, if not the most important, part of the problem. One of the
more successful strategies employed on these problems has been that of the
family of methods based upon a characteristic decomposition of the system
of equations known as Godunov methods. This is done by assuming that the
grid values represent average values of the solution over the surrounding
cell. A Riemann problem is then solved, approximately or exactly, at each
cell interface. This problem has a wavelike solution and hence we may
apply upwind difference schemes based upon the characteristic speeds and
directions.

Of these methods one of the most popular, and the one we shall
consider here, is that due to Roe. As with the similar methods that fall
into this category Roe’'s method has been designed to provide accurate

solutions away from jumps while being able to avoid the oscillations
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generated by classical second order accurate schemes, Lax-Wendroff for
example, at discontinuities. In common with most numerical schemes for
conservation laws these schemes are conservative but other desirable
properties, such as entropy satisfaction and total variation diminishing
(TVD), can also be ensured with the scheme.

As has been said these schemes have primarily been used and
developed for discontinuous flows. Why then should we want to try
applying these schemes to atmospheric and oceanographic flows governed by
the shallow water equations and not normally associated with violent
changes? Clearly second order schemes are desirable to achieve accuracy
on reasonably sized grids but more importantly many of the design features
of these schemes are as relevant to the shallow water equations as they
are to the Fuler equations, conservation and the existence of wavelike
solutions in particular. Discontinuities may arise in atmospheric and
oceahographic flows as fronts or tidal surges and bores and so the shock
handling capabilities of these schemes will not go to waste. Numerous
papers, which include Roe et al. (1981, 1984), Sells (1980), Sweby (1984),
Glaister (1985,1987) and Priestley (1987} have demonstrated the success of
Roe type schemes in dealing with discontinuities. Here we concentrate on
their ability to compete in areas which exhibit smooth solutions, for
flows where jumps in the solution are only a possibility‘rather than a
vital part of the calculation.

In Section 2 the philosophy behind the Roe approach will be given
and B functions and flux limiters will be introduced as a way of
generating a family of methods.

In Section 3 the shallow water equations are stated and the Roe
decomposition performed in some detail to obtain the necessary building
blocks of the method. )

In Section 4 the various methods that can be obtained by this
approach are applied to Grammeltvedt’'s problem (1969) and it is
demonstrated that correct treatment of the source/forcing term is
essential. It is shown that schemes capable of handling discontinuities
can achieve the same, if not better, accuracy than the more common second
second order schemes. (Indeed other numerical experimentation has shown
the basic first order Roe scheme to be as accurate for the shallow water
equations as the Lax-Wendroff method when the latter requires some

artificial viscosity to remove oscillations.) The experience gained on
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this problem is then applied to the problem of coastal flow. Here the
main source of difficulty is the computationally open boundaries, and

their treatment will be discussed.

2. ROE'S SCHEME

In this section we give a brief account of the philosophy behind the

Roe type schemes, largely following Roe’s original paper (1981), and refer
the reader to that paper for more details.
Consider the initial-value problem for a hyperbolic system of

conservation laws

g_t+_E_x=O (21)

with initial conditions

a(x.0) =g (x). (2.2)

where F = F(q) and the Jacobian matrix A = 0&F/8q has real
eigenvalues.

Introduce now the discrete representation X; = X + iAx,

n .
t o=t + nAt and suppose that g; approximates g(xi,tn). If the

initial data (2.2) is specialised to

a(x.0) = q (x€0) ; gx.0) = a4 (x>0) (2.3)

then we have a so-called Riemann problem which has wavelike solutions.
Godunov (1959) produced a numerical scheme for the solution of (2.1) that
treats the data as a set of constant states separated by discontinuities
at the points Xiug SV, a Riemann problem then being solved in each
interval, with a time-step restriction such that the waves from one jump
do not interfere with those from neighbouring jumps.

With the Roe type methods a slightly different approach is taken by

considering the approximate problem

a, + Algg - ) = 0. (2.4)
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where A= A(gL.gR) is a constant matrix that is chosen to be

representative of the local conditions. A further restriction is that A

must satisfy the following properties collectively called Property U:

(i) It constitutes a linear mapping from the vector space g to the

vector space F.
(ii) As g 2gp 4 X(g_L.g_R) - A(q) where A = gF/dq.
(iii) For any gy +9p: X(QL.QR).(QL—QR) = EL - ER'

(iv) The eigenvectors of A are linearly independent.

Finding an A that satisfies Property U is not a trivial problem.

Neither of the two ’obvious’ choices A= ‘A(AL + AR) or

~o

A= A(%(gL + gR)) will in general satisfy (iii), but in the case of (2.4)
Roe has shown that one can be found.
This leads to a basic first order upwind scheme for which at each

time-level, at each jump, we calculate the eigenvalues Ai’ the

eigenvectors e, and associated strengths a, of A(gL.gR). Then the

scheme is:

A; >0 ap

. |
if then add - fiNae to 3 . (2.5)
X 1 171
Ai <0 q

[For a two-dimensional problem

g_t+Ex+gy=O (2.6)

we can calculate A(gL.gR) & B(gB,gT) and solve separately in the

x—direction using A and in the y-direction using E. These solutions
may then be combined in various ways, [see Strang (1968), Barley (1987)
for discussions on operator splitting].

The Dbasic scheme, (2.5) is only first order and takes
discontinuities in its stride, by smoothing them out! It is so diffusive

as to be totally inadequate for most problems, and in particular for our
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applications. The problem then is to find a second order scheme, based on
the philosophy previously illustrated, without losing the shock handling
properties.

This is achieved by flux limiting, which is essentially done by limiting
the anti-diffusive terms in the second order scheme at discontinuities, to
avoid the oscillations of classical second order schemes, while retaining
second order accuracy in smooth regions of the flow, see Sweby
(1984,1985).

Define ¢j'i+% to be the signal from the th eigenvalue at the

jump at i+4, i.e.

-At

¢j'i+% = —-A-;{- Ajajg_j. (27)

The algorithm (2.5) then becomes:

Ay 20 9541
if then add ¢.,.,, to
A, <O Jhivs q,
J i
If we now transfer an amount aj'i+% against the direction of the

flow we can achieve second order accuracy in smooth regions by choosing

a; = %(1—|vj|) where vy is the CFL number of the jth wave.

Define a transfer function, Baines (1983), by

B( B(b,.bs), say. (2.8)

a5 i P35, 14 aj,i+%—aj¢j,i+%—aj)

where Uj = sign (Aj). Choosing B(b,,by) = b, gives Lax-Wendroff, while
B(by,bs) = %(by+bs) corresponds to Fromm’s algorithm. (A more
comprehensive list of the different B functions that can be used is
given in the Appendix.) The two schemes above are classical second order
methods and suffer from oscillations at discontinuities. We can, however,
overcome this problem by not restricting ourselves to linear functions of
b; & by. Sweby (1984,1985) introduced a non-linear limiter function ¢(r)
where r = by;/b,. The region in (¢(r),r) space that ensures a TVD
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(Total Variation Diminishing), i.e. oscillation free scheme, can then be
plotted. This region can then be further constrained to ensure
oscillation free second order schemes (away from extrema). Sweby (1984)
plotted the minmod, Van Leer and Superbee limiters (see Roe & Baines
(1982), Van Leer (1974), Roe (1985)) and showed these to lie in this
region. (Two-dimensional algorithms can be constructed that are based on
these limiters but also take into account the dimensionality of the
problem by including cross terms to eliminate type terms from the
truncation error, see Baines (1983)). These ideas will now be used in the

following sections.

3. SHALLOW WATER EQUATIONS

In primitive variables the 2-D shallow water equations relevant to

atmospheric flows are given by

b+ ($u), + ($v), = O (3.12)
u, +un + va to =0 (3.1b)
v+ uv, + Vvy + ¢y = -Qu, (3.1c)

where u & v are the x,y velocities respectively and ¢ is the
geopotential (¢=gh) where h 1is the height of the free surface. Q is
the Coriolis parameter which for the atmospheric flow will be given by the
usual fB-plane approximation and for the coastal flow problem will be
taken to be a constant.

To apply Roe’s scheme to these equations we need to rewrite them in
conservative form. Replacing x &y velocities by x & Yy  momenta

(m = u¢, n = vp) we find
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gbt + mX + ny =0 (3.2a)

m? | $% m| :

m + 3 + 35 + 3 = {n (3.2b)
L JX JY
mn n? + ¢2| _ _

n + 5 + 3 5 = ~(m. _ (3.2¢c)
\. X . .ay

This can now be written in a vector flux form as

where
p-¢~ ~ m - I n ~
g = (m F = l_n_2__+ 2/ ¢ = |22
o= ¢ 2 = ¢
n mn n + ¢%
“ - ¢ o h¢ 2 o
0

%
Wq ¢

5

W= Wyl = ¢Au
i

Wa ¢Av

and now, expressing the vectors g, F& G in terms of the intermediate -

vector we obtain
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Wy WiWo W W3
2w 4
q = [wywz|, E = W2+"L2 . G = |wawg
4
2w
WiWg WoWg w3+—é

Using the standard notation of Ax = X - ¥ and X = %(§R + gL)
we proceed to calculate matrices B(w) & C(w) such that

I

B(w)Aw
C(w)Aw.

Ag
AF

This leads to

f— 3

2w, O 0
B=|wy, w, O

ws O wels

(wo W, 0]

We now find A such that

det (AB - C) = 0,

giving
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which are seen to be the u,ui\/dT characteristic speeds we would have

expected.
These eigenvalues give three eigenvectors which, after
multiplication by B, are given by: -
r ~
~ b r B - -
W4 0 W4
o Y s
€1:2,3 = 9 Wz"Wi‘/ wil ., |0 , w2+w1\/ wZlep
V_IS ‘;1 ;JS

It is noted here for future reference that,

if regarded as a 3x3
matrix, the inverse of the above is given by:-—

~ ——

/_ _ -
W2+W1\/ Wf‘ "‘Wi 0
. A A
— | -2wsV W2 0 owyV w3 (3.3)
/—
_2
2w, vV w? Y _
."(Wz‘Wi\/ wi) Wy 0 J

Three a's are now found such that

z a,e. = Ag (and by construction Eai?\.e. = AF), i.e.

1—1
i i
F WwiAws —wolw
o hwy - YalWa “Wolw,
2
2W1'\/ Wy
aF - wiAWQ - W3AW1
. 2 4 - L. - ]
Wy
F WiAws — Wolw
as Aw, + —2—21
L J \ 2w1\/ wf J
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Performing similar operations in the y-direction gives

G W [y Wy W !,
?\1,2,3__—_1—\/w‘f,-_—3,-_—3+\/wf with
Wy Wy Wy
- -
~ b - r ~ ~ —— ~
w 0 Wy
G ) - - -
€1.:2,3 = Wa Wi Wa g
_ _
~~W3_W1\/W% -0 - Wg + Wy 'JW%JJ
and
~ - ~ . -
G WiAwg — WoAw
ai AW1 - i 3_ 3 1
2w,V w2
G ‘;1AW2 = ‘_VzAwi
<a2 r = 5 = r
Wi
G WwiAwg — WoAw
a3 AW1 + —_1 3_ 3 i
2w,V w?
. J \ J

These eigenvalues, eigenvectors and wave strengths are used to
decompose the problem into wave type components to which algorithm (2.5)

can then be applied.

4. MODEL PROBLEMS

In this section two model problems will be discussed that will force

us to select different aspects of the method to ensure a worthwhile
solution.

(i) The first is an atmospheric flow using the equations in ‘the form
given in (3.2). It is known as Grammeltvedt’'s problem with initial
conditions 1 (see Grammeltvedt (1969)) and concerns a flat bottomed
channel 6000 km x 4400 km. The north/south boundaries are taken to be

rigid walls and the flow is assumed peridic in the east/west direction.
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The initial conditions for the height are shown in Figure 1. The
velocities are obtained from the geostrophic approximation.

This problem is particularly useful because, although the exact
solution is unknown, it is quite straightforward in that the geometry is
rectangular, the boundary conditions are easy to write down, and owing to

the nature of the problem the available energy, given by

AE = :'zé J{(uz + v2 - ¢)¢ — ¢2} do, ’ | (4.1)
o

where ¢ is the average value of the geopotential of the free surface and
o is the domain, is conserved. Hence, by monitoring this quantity, we
can measure the success of our efforts without knowing the analytic
solution to the problem. It is worth just noting here that conserving
100% of the available energy is necessary for an exact solution but it is
not a sufficient condition.

A numerical scheme is deemed to have become unstable when the
available energy has risen by 10%. With some of the results the comments
"going unstable" or ‘'"about to go unstable” have been added, which
indicates that although we have not reached the 10% criterion the
available energy for that particular method had started to increase, to a
greater or lesser extent, and would, by our definition, have become
unstable very rapidly thereafter.

A 200 km grid (30 x 22) is used and time-steps of 5 minutes are
taken. The results in Table 1 correspond to the percentage of the

available energy left after 5 days.

First Order I 3.9%
Lax~Wendroff i 60 % (going unstable)
2nd order fully upwinded :- - 42 %
Fromm’s algorithm e 43.5%
3rd order split = 45 %
Minmod e 23 %
Superbee 1- 66.3%2 (going unstable)
Minmod (2-D) t- 32.3%
Table 1
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As can be seen these results do lack a certain something, namely
rather a lot of energy. The schemes that come out best are the more
classical second order methods, although as with all these schemes the

time-step must be restricted because the CFL numbers are given by

uAt/Ax & (urVvp)At/Ax, and the utvé values are an order of magni tude
larger than the wu characteristic. The methods, though, are explicit
finite differences and so this time-step restriction is not too much of a
problem. Reducing the time-step to stabilize the Lax-Wendroff and
Superbee methods still only leaves us with just over 50%. Using the
‘genuinely two-dimensional’ minmod scheme does, in this case, do better
than its 1-D version, although there are also examples where it does
fractionally worse, but it still is a long way behind the other methods
and is computationally very much more expensive to calculate.

So far the right hand side of the shallow water equations,

b = (o, 0n, —Qm)T, has been ignored. For the shallow water equations, in

this context, the Coriolis force is a significant term of equal magnitude

to the (¢2/2)X & (952/2)y terms, the geostrophic approximation. The
results in Table 1 were all obtained by evaluating the Coriolis force
pointwise and using this value to update at that particular gridpoint. In
the light of the previous sentence we should perhaps pay more attention to
these terms.

Roe (1986) sHows how to deal with source.terms by considering the

simplest problem of any relevance to us, the scalar wave equation

u +au = b(x) (4.2)

where a 1is a positive constant. The initial-value problem for (4.2)

with initial data u = uo(x) has the general solution

u(x,t) = uo(x-at) + i- T b(x)dx . (4.3)
x=at

In practice the integrand in (4.3) will depend on the solution u,
for which we only have information at the previous time-level, and hence

we would expect to approximate the integral by
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Figure 1: Initial height field.
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i{x—(x—at)) b(x-at) = tb(x-at).

Hence the source term ought to be upwinded in the same way as the other
terms.

Glaister (1987) has considered the 2-D FEuler equations in r,z
variables with cylindrical geometry. (Here the ’source’ terms are due to
the expansion of the grid in the radial direction.) These source terms
were expanded in the eigenvectors associated with the radial direction
and upwinded according to the corresponding eigenvalue. This procedure was
found to significantly improve the results.

Our problem is slightly different in that in vector form the

equations are

+ =
@ +E 4G =b
and we have one right hand side vector but two sets of eigenvectors in
which to expand it, with no immediately clear way of splitting b into

QA + QB prior to expansion in terms of the eigenvectors of A or B.

One of the options is to take

0 0
_b.A= on| & B° =0 | (4.4)
0 ~Om

that is expand the source term associated with the x-momentum equation in
the x-orientated eigenvectors and similarly for y. This sounds eminently
reasonable but it is not at all clear from the vector equation why this
should be done, and what treatment should be given to a source term in the

¢ equation which has no associated direction. Another option is to take

b = bP = . (4.5)

In order to expand the forcing terms in the eigenvectors we need to
know weights for each eigenvector. In the x-direction this is done by

multiplying the vector to be projected, bé , by the matrix (3.3), a
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similar operation being done to bp. This gives the weights associated

. F
with e;,2.3 & g?'2»3 as

9‘7'3_ (1,0,-1) & 1”—;”—-5—(1,0,—1) ' (4.6)
v w? v w3

for the first option, (4.4), and

/ .
(%3 ,2‘;2\/ ‘_V% ,_‘;3) & — (;12,2;%3\/ ;f% ,—‘-‘;2) (4.7)

4V w2 4V w2

for the second option (4.5).

For the first case we choose to average (mn by Qﬁiﬁa, because it
marginally simplifies the expressions in (4.6). However, the schemes do
not seem very sensitive to the averaging used in the evaluation of b,
Ow,ws giving the same results. Both these options give marked increases
in accuracy but it is the first that gives the best, and the results for
this strategy are given below in Table 2 for some of the schemes, using 4

minute time-stepping.

First Order B T2.4%
L-w e 85.9% (about to go unstable)
2nd order t— 87 % (about to go unstable)
Fromm - 85 %
3rd order - 85.4%
Minmod - TT7.3%
Superbee T- 86.9% (about to go unstable)
Minmod (2-D) - 8 Z
Fromm limiter = 82 %
Van Leer e 80 %
Table 2

The effect of cross—-terms becomes less significant as the time-step is

reduced because they are 0(At?).
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Figure 2: Predicted helght field using the Van-Leer limiter.
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Reducing the time-step to stabilize Superbee we obtain the following

results
3 min T— 87.8%
2 min t- 90.4%
90 sec  :- 92.8%.

2-D Superbee with the 3 min. time-stepping gives 88%, reinforcing the
claim about the cross terms. These results are actually better than the
classical methods give us with reduced time-stepping, but the Superbee
scheme could still cope with any discontinuities that may arise. These
results are a considerable improvement over our previous table, showing
the importance of correctly dealing with source/forcing terms. Figure 2
shows the height for the Van Leer limiter, figure 3 shows the height for
Fromm’s scheme while figures 4,5,6 show the height, velocity field and

available energy for Superbee with 2 minute time-stepping.

(ii) The second model problem is that of coastal flow. The equations

used here are

/
Fuv u? + v2
u touu vu, tgz vt -W=0 (4.8a)
vv/
Fvv u® + v2
Vt+qu+VVy+gZy+—T—_l-_—z——+Qu-O (481))
z, + (u(h + z))x + (v(h + z))y = 0, (4.8c)

where h is the depth of the sea bed, below some fixed level and z is

the elevation above this level i.e. total depth is h + z. The new term

is a friction term and F is the friction factor (0(10—3)). Our
conserved variables are then g(h + z), g(h + z)u, g(h + z)v, much as
before. The only real differences from before are the addition of a
potentially variable seabed and the addition of the friction terms to the
right hand side. The Roe decomposition goes through as previously. The

energy is no longer conserved, due to the presence of friction, and so
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these equations possess no easy guide to the success of the approximation.
We will therefore use our experience with Grammeltvedt’s problem to choose
the appropriate methods.

The real problem posed by this model problem is the treatment of the
boundary conditions. We shall take as our problem a straight stretch of
coastline 50 kms long. This presents no problems as it is treated as a
rigid wall as in Grammeltvedt's problem. Although stretches of coastline
50 km long and perfectly straight are rare this is not a limit on the
applicability of the scheme. Irregular domains can be transformed to a
regular domain or attacked as in Priestley (1987). The real problem here
is that to predict our coastal flow we do not want the expense of
calculating the flow over the entire ocean and so we are forced to use
computationally open boundaries.

As our model problem, then, we take a (10 x 50) km. region with the
rigid wall to the west and the southern, eastern and northerly boundaries
open. Assuming that the flow is sub-critical we shall need one boundary
condition on outflow and two on inflow boundaries for the exact problem.
Edwards, Please and Preston (1983) have discussed stable boundary
conditions for the linearised shallow water equations. A problem with
many finite difference techniques is that they require more boundary
conditions than the mathematical problem and this can cause severe
problems (see Burgess (1986). Using a scheme based on characteristics,
though, means that we only need to use the correct number of boundary
conditions, and those suggested by Edwards et al will be used. These are
(i) elevation prescribed at outflow and (ii) elevation and tangential
velocity given at inflow.

The initial conditions are taken from an exact solution to the 2-D

wave equation, namely

u=0 , (4.9a)
v =28 i [2;; - t)]  (4.9b)
- Veh vVgh

z = A sin [Z—W(——i - t)J (4.9¢c)

where A =1.0m is the tidal amplitude and P = 12.42 hrs is the tidal
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Figure 7: Initial conditions for coastal flow problem.
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Figure 9: Predicted flow using Superbee Llimiter.
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period. The initial values are plotted in Figure 7. Formulae 4.9 are not
only used to give the initial conditions but are also used to prescribe
the boundary conditions as well. Unfortunately the solution described by
equations 4.9 rapidly lost touch with reality at the seaward boundary and
so the region was extended to 0<x<20, =-25<y<75km and the boundary
conditions applied on these boundaries to try to. minimize their effect on
the region of interest.

Figure 8 shows the solution generated by using the. first order
method with 30 second time-stepping and Figure 9 shows the solution given
by Superbee with 10 second time-stepping, plotted after six hours. These
show quite similar results and demonstrate the stability of the Superbee

algorithm in this situation.

5. CONCLUSION

It is well known that the Roe type flux limited schemes provide a
very powerful tool for resolving flows, where discontinuities form a major
part, without oscillations. In this paper smooth flows with substantial
forcing terms have been considered and the methods have been shown to be,
if anything, even more accurate than the more classical second order
schemes provided that due attention is paid to the treatment of the
Coriolis and {friction components. It has been found in numerical
experiments that for stability it is essential to include the forcing
terms in the limiter function as well as just upwinding it. Duhamel’s
principle explains the need to decompose the forcing term within Roe’s
scheme, Sweby (1987), although we do not as yet have any insight into the
dimensional splitting of the right hand side.

Another advantage illustrated here, of characteristic based schemes
over non-characteristic based schemes is the ease with which boundary

conditions may be applied and the stability of this application.
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APPENDIX v B function

First Order B(b,,by) = O

La.X—WendI'Off B(b1 ,bz) = bi

Second Order Fully B(by,bz) = b,

upwinded

Fromm’s algorithm B(b,.bs) = %(b; + bs)

Third Order ~ B(by.bs) = 3((2-0)b. + (1+v)bs)
(v is the CFL no.)
by if [by[<[bs]

Minmod B(b,.by) = *

- by if by [>]bs|
[ 1,b
%(by+b,) <13

3 b,

Fromm based limiter B(b;.bs) = 5
2 minmod (b, .bs)
L otherwise
if byby>0
and zero otherwise
2b,b
S22
(b,#bg) P20

Van Leer limiter B(b;.by) =

0 otherwise
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b, 1212
2
b, 1§%3$2
Superbee B(b,.bz) = % b t
b, 2152
2
bz,
25, p222
if byby>0

0 otherwise

[ by o 20
b, 1G.424
b, 1¢R2¢242(12)
i
Hyperbee B(b;by) = J2+2v ’ 9;92+22_
1-p72 b,*" 1-v
2+2§1—v!11 2222+211—v!
! D b, v
if byb, > O

0] otherwise.

Ultrabee ¢(r) = u(?zu) v(l—rzl+ :;1—r'v)
-r

B(bibz) = b2¢(r) if b1b2>0

0 otherwise.
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