Towards coupled data assimilation systems
F. Bouttier - ECMWF

The current evolution of meteorological models and observing systems mean implies no single data -
assimilation system is going to be able to blend all the available data. Although 3D-Var/4D-Var are
likely to remain at the core of atmospheric data assimilation, several ancillary assimilation systems
need to be developed and properly coupled together. This paper reviews the issues, discusses some
of the possible solutions and lists the associated problems.

1 Introduction: requireme\nts for NWP

Meteorological models are being improved to represent .an increasing variety of physical processes -
that go beyond the traditional synoptic-scale troposphere. This goes hand in hand with the growing
availability of high-quality data, mainly from satellites, to observe the corresponding physical variables:
clouds and precipitation including microphysics, state of land and sea surfaces including coverage of
snow, ice, vegetation and parameters of the biosphere; chemical content of the stratosphere; dynamics
of the deep ocean. The trend is to blend meteorological model design with expertise from other
scientific communities to try and create so-called Earth Simulator Systems, which would represent all
the important physical processes that interact on the global scale, for applications in forecasting on a
wide variety of scales, up to seasonal prediction and climate studies.

In NWP (numerical weather prediction) this evolution has originally been fuelled by the recogni-
tion of the importance of various boundary forcings on the meteorological synoptic atmosphere (the.
troposphere at scales larger than 100km). The evolution of the atmospherie fluid is influenced by cloud
processes, surface fluxes of heat, moisture and momentum, and radiation. The priority in research and
development has naturally been given to the initialization and forecasting of those processes that have
the greatest impact on weather forecasts. This leads to the following sorted list of basic requirements
for the initialization of synoptic-scale NWP models: (roughly in decreasing order of importance)

1. very accurate initial tropospheric temperature/wind on synoptic scales, |

2. acceptable diabatic forcing, notably tropical convection (weaknesses in the initialization of con-
vection may cause substantial large-scale errors which affect the extratropical systems),

good surface forcing fields: orography, roughness, prediction of heat and moisture fluxes,
. radiative forcing e.g. initialization of the cloud cover,
initial humidity (largely forced by the model dynainics),

o oo

chemistry (some knowledge of trace gases and aerosols is needed to compute the radiative forc-
ing); . . . '

7. initialization of clouds and precipitation is regarded as a secondary problem in most NWP
centres. ‘ . .

These requirements for forecast models are also valid for data assimilation which is normally
formulated as a succession of short-range model forecasts. Slowly evolving imbalances (such as drifts
in the soil moisture) may actually be more harmful in data assimilation that in pure forecast. mode,
because assimilations run for longer periods that can reach several years.
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Data assimilation brings additional requirements in order to allow a correct use of observed data
(i.e. a meaningful comparison between observed parameters and model fields from the previous short-
range forecast): it needs accurate i

1. mid-tropospheric temperature and wind (these have fast growing errors. Good background fields
are essential for quality control and in 4D-Var for providing the correct flow-dependency to the
analysis),

2. low-level and stratospheric temperature and wind (necessary for scatterometer wind dealiasing,
the computation of radiative transfer observation operators, and a correct handling of tidal
signals),

3. humidity (its assimilation is difficult, and there is little accurate data),

4. ozone (for radiative transfer observation operators and as a forcing to stratospheric chemical .
processes),

5. land surface variables: soil humidity (which has a long memory), radiative transfer variables
(near-surface temperature, albedo, snow, ice...), are all essential for a correct handling of the
diurnal cycle in data assimilation,

6. sea state (to compute surface fluxes),

7. clouds, precipitation, aerosols (poorly assimilated although they are essential for radiative trans-
fer observation operators and for controlling the spin-up of the forecast model).

}‘.

These requirements are particularly important for the use of satellite data. An example of concretisa-
tion of the above “requirements for today” is the ECMWF data assimilation system, which is mainly
concerned with the skill of intermittent medium-range weather forecasts in the midlatitudes (figure

1):

o Its core is a low-resolution, numerically expensive 4D-Var analysis of air surface pressure, tem-
perature, wind, humidity, in the troposphere and the stratosphere.

e The forecasts rely on a high-resolution global assimilating model, which was made as realistic
as possible in order to improve the comparison with observations.

e An experimental stratospheric ozone analysis is coupled with temperature and wind through the
model equations, 4D-Var and the radiative transfer observation operator.

e There is no cloud analysis per se, the cloud fields are forced in the model by the other atmospheric
model fields during the assimilation.

e The main observations are the conventional in-situ measurements of pressure, temperature and
wind, because of their high quality, and a selection of satellite data, because of their excellent
coverage. In order to be useful, data must be reliable, frequent and timely.

o The ocean wave model has its own full-resolution wave analysis, which is useful to the atmo-
spheric model’s roughness, and to the wave forecasts themselves.
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Figure 1: Schematic organisation of the ECMWF data assimilation system.

e Surface analyses of snow, ice, soil temperature and humidity are done at full resolution, using
simple algorithms and data selection.

e The SST analysis is provided by NOAA.

Although the 4D-Var system has received most of the publicity, the other surface analysis modules
above are important, too: they do not need to work at a very high precision or with sophisticated
data, but they are carefully designed and monitored because they have the potential to harm the
whole system if they go wrong.

2 Emerging needs and opportunities

Models are able to represent more and more physical processes. New satellites are providing enhanced
data that yield information about new physical parameters. Using these data will require model
improvements, too. Finally, new degrees of freedom in the models need to be kept under control by
the extension of data assimilation to additional variables. It leads to-a complex three-way interaction:

° NWP models are extended to represent new processes in assimilations and forecasts, allowing
the generation of new products and the public will expect their quality to keep rising.

¢ New observing systems and data assimilation techmques 1mprove NWP forecasts and the assim-
1lat10n of new ﬁelds

¢ .In order to use remotely-sensed data correctly, it is necessary to improve the representation of
"new processes in the model and data assimilation. '
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New issues become fashionable because of evolving user expectations, the evolution of satellite
remote-sensing technology, or simply their recognition as a promising way to improve weather forecasts:

Clouds and precipitation are beginning to be well observed by satellites (e.g. TRMM, MSG, see
the other contributions in this volume) and there is a demand for more reliable forecasts as well
as global analyses for climate monitoring;

Ozone, aerosols and other chemicals are increasingly well observed, particularly in the strato-
sphere. They are connected with urgent environmental problems such as ozone depletion, pol-
lution and UV forecasting, climate change, and their tracking could improve the estimation of
atmospheric winds.

The actual weather on land surfaces can be better simulated thanks to new data on surface
characteristics, which opens the door to coupling with biosphere models, and to applications
in agriculture or seasonal forecasting. '

Sea surface fluxes are better known through observations of the sea state and the boundary layers of
the sea and the atmosphere. They are essential for deep ocean modelling and seasonal forecasting.

Fine scale modelling becomes possible thanks to new high-resolution, frequent and precise data,
with applications for short-range NWP such as thunderstorm and flood nowcasting.

Extreme event forecasting needs to be improved. This probably calls for the targeting of fore-
casting resources and observations to the appropriate areas.

Errors in NWP forecasts can be better understood and controlled through bias correction of models
and observations, provisions of estimates of the forecast and analysis quality, and observation
targeting techniques to optimize the observing systems.

More frequent NWP product updates are necessary for short-range forecasting, which will re-
quire frequent data and improved, quicker data acquisition and forecasting procedures.

Massive data monitoring will be required from the NWP centers to protect themselves against
data quality problems, and as a feedback to data providers. This will be increasingly complex
and expensive.

The above emerging requirements have several consequences. First of all, there are implications
for the organisation of the work in NWP centres. The investment into each observing system and
data assimilation module, is in proportion to the expected return on investment. Scientifically exciting
instruments may not provide advances in weather forecasting performance. Due to the limited amount
of manpower available for research and development in each NWP institute, there is a danger that
issues that are regarded as unimportant, or too difficult, will not be seriously tackled by anyone, leading
to persisting weaknesses. A good way of setting priorities for work is to run impact experiments using
realistic data assimilation and forecasting systems; their scientific value is at risk if they are carried
out by people who were hired to demonstrate the importance of some aspect of the observing system
or data assimilation procedure. In an ideal world there should be no duplication of effort between
NWP centres; they should coordinate their work, and exchange software as much as possible, so as to
ensure that the broadest range of problems is explored. Some important scientific problems are outside
the competence of NWP centres (ice sheets, properties of the vegetation...); their study should be
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left to specialist institutions. Studies need to be performed using a realistic experimental setup: low-
resolution models, simplistic analysis systems or simulated observations usually lead to useless results.
To allow good-quality scientific collaboration, more open NWP experimentation facilities should be
developed, such as (perhaps) ECMWZF’s prepIFS system.

The trend towards more complex models and heterogeneous meteorological data networks raises
some technical concerns, too. Data providers may not realize that an overcomplicated encoding of
observations, or an encoding that keeps changing, does create major problems in NWP centres. This
is often enough to make the difference between a useful and a useless observing system. Data that
is not transmitted in real time is often lost for NWP applications. Data with irregular quality or
reporting frequency cause extra monitoring work at NWP centres, work that could have been put to
improving the use of the data.

One can foresee that the planned increases in satellite data volumes will cause specific difficulties.
Data processing has a cost in storage and computing facilities (it vectorizes poorly on the supercom-
puters used for NWP). Ideally, the density in time and space of the transmitted data should match
the resolution of the assimilation system and the scale of the physical phenomena of interest, notably
in terms of error growth and propagation properties: :

e SST and ice evolve slowly on the scales relevant to NWP;
e Soil wetness evolves quickly and on small scales, but it does not propagate much in space;

e Mid-tropospheric temperature and wind evolve quickly, on rather large horizontal scales but
on small vertical scales, with very quick chaotic amplification of errors (locally, in a matter of
hours);

o clouds and precipitation evolve very quickly and on small scales, in a chaotic manner;

e chemicals are believed to evolve rather slowly, on small scales (ﬁlamentatlon plumes and local
sources). How quickly do their forecast errors grow 7

The technical facilities must match the volume and complexity of the data that is being used. There
is no point in insisting on using of new data types before appropriate diagnostic tools are available
— if it takes too long to diagnose problems, people will not try and understand them. It is equally
wrong to waste qualified manpower to very fine technical optimization of the CPU and memory used
by the data processing and assimilation system. -

3 What and how to assimilatej |

A data assimilation procedure attempts to accumulate observed information into a numerical model.
It only works if the data frequency is comparable to error growth rate, and if the amplitude of the
errors in the observations (including biases and errors in the observation operator) is comparable with
model errors. It means that some fields and observations simply cannot be assimilated:

e Very slow processes: e.g. vegetation type or instrument biases require a specific, independent
estimation procedure.
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e Very fast processes: e.g. vertical air velocity, precipitation, cloud water and ice (so far) tend to
be forced by the NWP model more quickly than they could be assimilated. However, if they
are observed, it makes sense to try and correct the processes responsible for their evolution
(McPherson 1999).

e Processes which are too poorly modelled: actual weather, lightning, visible satellite images
cannot (yet) be directly forced into NWP models.

e Observations which are too poor: divergent wind, potential vorticity, momentum fluxes at the
surface, temperature gradients, or soil moisture are all essential features of modern models but
little or no direct measurements are available or even planned.
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situation, and by retrieval methods.

Fundamentally, data assimilation is about interpolating between observations which are available
at points in time and space. The main problem is to determine the most appropriate interpolation
structure: intuitively, one should know about the typical scales of errors for each type of weather, the
existence of homogeneous air masses, the presence of coastlines and mountains, and even cloud edges.
The next problem is, how can we represent what we know about these structures numerically. This is
the purpose of background error modelling, which in turn has led to developing a variety of analysis
algorithm, each with its own pros and cons. One- or two-dimensional problems can often be treated
empirically using simple techniques such as linear regressions, interpolation by polynomials, Cressman
technique, splines or krigeing. The multivariate three- and four-dimensional problems that are found in
the modelling of the atmosphere and the ocean normally require more complex statistical interpolation
techniques, which rely on the proper modelling of forecast and observation error covariances. The most
popular at the time of writing are:

Optimal Interpolation is quickest to set up,

3D-Var (three-dimensional variational analysis) avoids the data selection noise of OI and can handle
weakly non-linear problems.

4D-Var (four-dimensional variational data assimilation) is expensive and thus only justified when
the following aspects are important:

e an analysis which is consistent with the dynamics of the model in unstable regions such as
developing storms, '

s a good consistency in the use of observations distributed over time (which limits interpola-
tion errors, and allows observation errors to be averaged out over time),

e a reduction of model imbalances in the forecasts started from the analysis,
e the multivariate coupling between tracer and wind analysis through the model’s transport
scheme. '

Kalman Filtering is even more expensive and only seems warranted for problems with low error
dimensionality. Theory predicts that KF is more optimal than 4D-Var, but most KF implemen-
tations so far have been too approximate.
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All these algorithms attempt to solve the same mathematical problem, which would yield optimal
results (i.e. analyses that are as realistic as possible) if they were not affected by the following
common approximations and mistakes:

A misspecified observation/background error ratio for ANY observation or model variable will
lead to valuable information being neglected, to overuse of bad data, or even to failure of the
numerical algorithm in the case of variational methods (Andersson et al 2000). The solution is
to check this ratio regularly for all observations.

A misspecified background error correlation. When correctly set up, it should enforce a smooth-
ing length scale and some balance properties in the analysis. Mistakes can cause noisy (i.e.
unphysical) analyses, spurious corrections of unobserved variables, physical imbalances in fore-
casts, and a bad observation/background error ratio for complex observation operators such
as the ones involving column averages. A solution is to check the structure functions for all
observations, by running test analyses with one observation at a time.

Biases in the model or in the observations can cause the model to drift in the assimilation, or
to some fighting between observing systems. This is not always obvious because biases may be
situation-dependent and create subtle problems through multivariate coupling. The solution is
to estimate and remove the biases from observations and model, taking care not to mistake one
from the other (Dee and Da Silva 1998, Dee and Todling 2000).

Observation-background error correlations are frequent in data that have been retrieved or that
involve some background-dependent quality control. These correlated observations often look
very good when compared with the model background field, lulling the end user into a misleading
sense of security. Actually, such observations may prevent valuable information from entering the
agsimilation system. The solution is to estimate the correlations, and to reduce the observation
weight accordingly (highly correlated observations should be given very small weights).

Variables with inhomogeneous error statistics will produce a suboptlmal or even unphysical

" analysis. For the statistical interpolation technique to work, the error magnitude of fields and

observations should remain stable during the analysis e.g. the background error covariance
should always imply physically admissible perturbations of the background fields. This is a
problem for variables such as humidity or ozone which are bounded, and which have errors of
widely different orders of magnitude depending on the area or layer considered. A solution
is to remap the observed and/or model variables to better conditioned ones in the analysis.
Unfortunately, bounded variables will remain a problem, as it is not compatible with practical
analysis algorithms (an example is binary variables such as ice cover or occurence of rain).
Empirical solutions must be sought.

Linearization and model errors in 4D-Var and KF will lead to unpredictable distortions of the
analysis increments. This is a fundamental weakness of these algorithms. A solution is to monitor
the linearity for realistic model perturbations, and to av01d trusting 4D-Var or KF blindly in
non-linear situations.

Mutually correlated observation errors are widespread in remote-sensed data, but they rarely
are a significant problem. An easy ad hoc solution is to reduce the weight of correlated data.
Note that most observation error correlations are the manifestation of a blas problem, which is
better handled by bias correction. ' :
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o Underestimating analysis errors when cycling the assimilation system will cause background
errors to be underestimated, leading to an underuse of observations. This is a common problem
when theoretical Hessian-based formulae are used to estimate the analysis error of 3D/4DVar:
real analysis algorithms are less optimal than theory would suggest, and their errors are much
bigger than what the Hessian indicates. ‘

e Underestimating model error in cycling. Some parts of meteorological models often exhibit
less variability than nature. In particular, many (if not most !) model errors originate in the
boundary conditions.

The bottom line is that the performance of data assimilation algorithms does not necessarily grow
with their sophistication. It is important to question their behaviour in physical terms, in particular
whether the information travels in a sensible way from the observation to the model fields.

4 Limitations of 4D-Var and KF

While the above remarks are valid for most analysis algorithms, there are specific problems regarding
4D-Var and the Kalman Filter. Since they are going to be widely use in the near future, it is important
to examine them in the light of our hopes for the use of satellite data.

4D-Var and KF rely on assumptions about the linearity of the evolution of errors, proper modelling
of model error, and, the approximation of the forecast model by a simpler one with less physics or
lower resolution. The tangent linear and adjoint models (including the observation operators) must
be linearized in the vicinity of a realistic trajectory. Small-scale phenomena tend to be less linear
than large-scale ones, meaning that there is a tradeoff between model resolution and quality of the
linearisation. Linearity is not only a property of the flow, it is a function of the amplitude of background
errors and frequency of observations, so we may hope that in the future it will be possible to apply
4D-Var or KF more widely, as models and observations improve. Linearity is also a function of the
field structure itself: although 4D-Var is able to couple tracer observations with the wind analysis,
this will only work for smooth tracer fields, not for discontinuous and small-scale fields such as visible
cloud observations. One may wonder whether 4D-Var should use a linearized model that is as realistic
‘as possible, or a simplified one that provides a more robust estimation of the derivatives of the cost
function.

~ Although 4D-Var is able to generate flow-dependent structure functions, it still relies on a proper
modelling of background error covariances, unless all degrees of freedom of the model are observed in
each assimilation cycle, and the model is perfect. Limits on the linearity and the presence of model
error mean that 4D-Var cannot be applied on very long periods, and that its cycling will remain a
crucial problem. The presence of model errors will limit the applicability of 4D-Var and KF until they
are properly represented in these algorithms. Due to their inherent numerical cost, 4DVar and KF
will never be applied at the same resolution as the forecast models.

Because of these limitations, 4D-Var and the Kalman filter cannot be used to assimilate obser-
vations related to the smallest scales and to the less linear features of the forecast model (figure 2).
This problem will not disappear, because as numerical resources increase, the models are refined to
include even smaller scales and less linear phenomena. A specific treatment of small scales is needed
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outside 4D-Var or the KF, which can only be achieved by coupling them with ad hoc, full-resolution
assimilation modules (see e.g. McPherson et al 1996).

actual surface pressure correction 4D-Var correction and misused pressure observations

15°W

15°%E ) o

\RES
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Figure 2: Example of inconsistencies caused by the linearisation and incremental formulation in the ECMWF
4D-Var (12-hour window, spectral resolution of T63 in 4D-Var and T319 in the forecast model, i.e. the version
used operationally in October 2000). The case is the analysis of a particularly violent storm over Europe on
27 December 1999 at 12:00 UTC. The maps show the surface pressure correction (in hPa) produced by the
analysis (left panel), and the correction that was internally produced by the 4D-Var algorithm (right panel).
Due to inconsistencies in model resolution and lack of linearity, the attempted 4D-Var correction of the storm
structure (South of Ireland and on Germany) was wrongly applied to the forecast model, leading to serious
inconsistencies in the use of many surface pressure observations (dots on the right panel) in the most active
areas.

5 Issues in coupled data assimilation systems

This section deals with the problem of making several data analysis systems work together. We will
call analysis module a self-contained analysis system, with its own observation processing and its own
analysis algorithm that converts background fields into analysed fields. These fields may be prognostic
fields in a forecast model that couples them. A typical example is soil state (soil temperature and
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humidity), which is coupled to the model atmosphere through the diurnal radiative forcing and the
parameterized surface fluxes of water, sensible and latent heat.

The simplest situation is when the modules do not really interact with each other. This can
be implied by the physical properties of the problem: if one can break down the analysis problem
into smaller, independent units, it will be easier to manage. For instance, to some extent soil state
analysis can be regarded as an independent problem for each model surface grid point, because soil
temperature and humidity do not travel much horizontally. In this framework, the time dimension
of the assimilation needs to be accounted for, but the full 3-D structure of the atmosphere does not.
Such properties simplify the specification of background error covariances. One then needs to rely on
the model forecast to blend the information from the independent analysis modules — it is important

that the model be robust enough to prevent internal drifts from developing.

The analysis problem may sometimes be broken down using assumptions of scale separation. In
the incremental 4D-Var (Courtier et al 1994), only the larger scales are analysed, and it is left up to
the model to force the smaller scales to a realistic state. Satellite bias estimation, which is in itself
an analysis problem (Dee and Da Silva 1998), can be separated from the atmospheric analysis by
assuming it to be slowly evolving and to have homogeneous large-scale properties implied by the form
of the bias correction equations,

It may not be obvious whether it is advantageous to couple analysis modules together. The
question is, are the errors to correct mutually correlated between several modules, and do we hope to
gain anything by explicitly accounting for these correlations. The expected advantages of a coupled
system are: '

e that it can better account for the physical interactions that account in nature,
» to reduce problems of inconsistency in interpolating data and fields between different modules,
. e to make better use of data by the representation of multivariate background error correlations
and consistent observation quality control.

The expected problems are:

¢ more worrying possibilities of problems spreading from one module to the others,

some likelihood of double-counting of observations when the same data is used in two modules,
e a more complex management, of the resulting technical system,

. possible feedback loops between the different modules that amplify analysis weaknesses if one is
not careful.

The first step is to select, for each identified module, the best analysis technique:

e In the atmosphere, cycled 3D- and 4D-Var are usually the preferred algorithms. They can be
extended to include the estimation of slowly-varying parameters such as bias predictors, or model
error parameters.

e Slowly-evolving atmospheric parameters and ancillary variables such as observation bias esti-
mators, or some model error parameters, can be included into 3D /4AD-Var as extensions to the
control variable of the variational analysis, if a suitable background error model is supplied.

234




BOUTTIER, F.: TOWARDS COUPLED DATA ASSIMILATION SYSTEMS

e Memoryless ancillary variables such as skin temperature over land can also be included into
3D/4D-Var. However, a correct background term is still needed to preserve the good behaviour
of the analysis.

¢ Slowly-evolving surface variables such as large-scale SST or ice can be estimated in a largely
independent way using two-dimensional interpolation techniques.

e Prognostic surface variables such as the state of soil and snow can be estimated as a two-
dimensional interpolation. Since the time dimension seems to be important, it has been proposed
to estimate them using one-column variational techniques. How to enforce spatial consistency
in this framework is not clear.

e non-linear, fine scale atmospheric fields such as clouds and precipitation can. be reasonably weil
analysed using empirical techniques such as nudging or single-column variational analysis.

o chemicals such as ozone or nitrogen oxides raise special issues if complex and expensive chemistry
evolution models are used. It has been proposed to use variational techniques along trajectories
predicted by the atmospheric model.

The same observation may be useful for two modules; it is not always clear then how to prevent the
‘same information from being used twice in the assimilation system (the double-counting problem).
An example is the use of geostationary satellite images for wind retrievals, or for direct radiance
assimilation. Another is the use of rain-related data for humidity retrieval, or for cloud nudging.
The theoretical solution is to use realistic observation error correlation models, but this is difficult to
implement. A more ad hoc solution could be to artificially separate the scales that-can be handled by
each analysis module, through a ﬁltering of the observed data. :

A related problem is, how to ensure that the same observatlon is not used in contradicting ways
by two analysis modules. The only solution may be to enforce a data selectlon technique to ensure
that it does not happen

A third problem arises when the same model variable is analysed in two different modules. Dis-
crepancies are liable to occur, and one must decide which analysis is the best.’ The answer may depend
on the scale, the area, and it ‘may require some independent cross-validation data. Some examples of
this situation are: the analysis of low-level dtmospheric temperature and humidity in the atmospheric
3D/4D-Var and in the soil state analysis, the distribution of clouds implied by satellite radiances or
precipitation data, and the surface skin temperature that can be estimated from satellite radiance
inversions or directly in SST and soil state analysis.

6 Some coupling strategies

Given the above discussion one can classify the main options for coupling in data assimilation as
follows:

uncoupled analyses: each analysis module works independently on the same background state. It
is left up to the model to blend the information from the resulting analyses. This approach is
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Figure 3: Four data assimilation coupling strategies : (a) uncoupled analyses, (b) one-way coupling,
(c) iterated coupling, (d) enforced consistency. '
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simple but prone to inconsistencies between the different modules. It is not optlmal in that the
information used by each module is hidden to the other ones at analysis time.

one-way coupling: each analysis is designed independently from the other, but some modules may
use as pseudo-background the analysis provided by other modules. This provides some limited
consistency between modules, but the first analyses to run have no access to the information
from the latest running modules. It may be difficult to specify the error statistics for pseudo-
background fields (which are similar to retrievals). This technique is widely used at ECMWF.

iterated coupling: each analysis is done in turn, possibly several times until all modules yield con-
sistent fields. It may be a good technique if one can guarantee that it converges towards a
meaningful analysis. It is used in the incremental 4D-Var procedure at ECMWF, and conver-
gence problems have been found. One could incorporate a variety of high-resolution analysis -
modules inside the incremental 4D-Var, because when the model is relinearized in the first incre-
mental update, its high-resolution fields could be corrected as well. It is probably a good way to
implement a cloud and precipitation analysis that is consistent with the atmospheric dynamics.

enforced comnsistency: in theory, one could perform some uncoupled analyses and then combine

the inconsistent fields together in a statistically optimal way. This can be formulated as a

special analysis problem, in which the input is a set of preliminary analyses, each with their

own uncertainties. This could be a theoretically optimal technique,.if one can manage to model

the relative uncertainty of analyses, and in particular the cross-correlation of errors between
~analyses from dlﬁerent modules ‘

full coupling: of course, if one can afford it and there are no fundamental 1ncompat1b1ht1es between
the different analysis modules, the best approach is still to formulate the whole coupled system as
one single analysis problem. As explained in previous sections, a problem there is the formulation
of a suitable background error covariance model.

7 Conclusion

Remote-sensed data from future satellite systems have the potential to provide extra value to at-
mospheric data assimilation and forecasts through better precision and coverage. However, 3D-Var
and 4D-Var analysis systems will remain blind to most of the interesting information because of the
underlying linearization hypotheses, the limitations of the models and the low effective resolution
_ of these algorithms. High-quality ancillary fields will be needed to select and to use the new data,
notably clouds and precipitation, aerosol distribution, atmospheric chemistry, and surface properties.
Tomorrow these fields will be regarded as regular NWP products by the users, and the NWP models
will be more and more sensitive to their correct assimilation.

These two requirements (using the new data and providing new products) can only be fulfilled
by combining heterogeneous analysis techniques to form coupled data assimilation systems. The
3D/4D-Var paradigm of blending all data directly into the model will be at the heart of such systems,
but complementary techniques need to be developed. This will require innovation, the development
of a suitable theoretical framework, of algorithms and (perhaps most importantly) of appropriate
monitoring tools that guarantee the good behaviour of complex analysis suites.
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Such coupled data assimilation systems will be required as the foundation of the planned Earth
Simulator Systems of the future, but they will present many difficulties that remain to be investigated.
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