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Assimilation of MODIS cloud optical depths in the ECMWF model

Abstract

At the European Centre for Medium–Range Weather Forecasts (ECMWF), a large effort has recently been
devoted to define and implement moist physics schemes for variational assimilation of rain and cloud–
affected brightness temperatures. In this study we expand on the current application of the new linearized
moist physics schemes to assimilate cloud optical depths retrieved from the Moderate Resolution Imaging
Spectroradiometer (MODIS) on board of the Aqua platform, for the first time in the ECMWF operational
four–dimensional assimilation system (4D–Var). Model optical depths are functions of ice water and liq-
uid water contents through established parametrizations. Linearized cloud schemes in turn link these cloud
variables with temperature and humidity. A bias correction is applied to the optical depths to allow for a
better agreement of the differences between model and observations. The control variables in the assimila-
tion are temperature, humidity, winds and surface pressure. One month assimilation experiments for April
2006 demonstrated an impact of the assimilated MODIS cloud optical depths on the model fields, partic-
ularly temperature and humidity. Comparison with independent observations indicate a positive effect of
the cloud information assimilated into the model especially on the amount and distribution of the Ice Water
Content. The impact of the cloud assimilation on the medium–range forecast is neutral–to–positive. Most
importantly, this study demonstrate the feasibility of global assimilation of cloud observations in the context
of a Numerical Weather Prediction system.

1. Introduction

The new frontier for improvement in weather forecasts and climate models from the point of view of defin-
ing the model initial state is the full use of avaliable satellite and ground–based data including cloud and
precipitation–affected observations. Current satellite–based observations are rich in global cloud–related infor-
mation. New sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on board of the
Terra and Aqua satellites, the Cloud Profiling Radar (CPR) on board of CloudSat and the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) on board of CALIPSO, are revealing the complex two-dimensional
and three–dimensional structures of clouds (Stephens et al., 2002). The challenge is now to extract the highest
amount of information about the cloudy atmosphere from this wealth of data by using state-of-art modelling
and assimilation systems.

The assimilation of cloud observations, using global Numerical Weather Prediction (NWP) systems, has been
hampered by several factors: (i) the inherent nonlinearities and discontinuities in the cloud parametrization
schemes, particularly those treating convection (Fillion and Mahfouf, 2003); (ii) the lack of suitable linearized
cloud schemes for the minimization that could combine a description of the cloud fields close to the non-
linear model with the computational efficiency of a linearized scheme, which is particularly important in
an operational context (Janisková et al., 1999; Mahfouf, 1999); (iii) the complexity of the observation op-
erators, e.g. the radiative transfer schemes for cloudy atmospheres especially in the presence of scattering
(Greenwald et al., 2002, 2004; Matricardi, 2005); (iv) the definition of the bias for these observation oper-
ators; (v) the deviations from Gaussian distribution in the error statistics; and (vi) the difficulties in defin-
ing error background statistics for cloud control variables. Most of these problems are also common to
the assimilation of rain–related measurements. The latter has received more attention in global NWP mod-
els (Županski and Mesinger, 1995; Tsuyuki, 1997; Bauer et al., 2006a,b, to mention a few studies), while
cloud assimilation has been successfully implemented in limited–area models based on nudging technique
(MacPherson et al., 1996; Lipton and Modica, 1999; Bayler et al., 2000), and mostly outside the operational
context.

Initial cloud assimilation studies have focused on cloud retrievals from radar data, either in the context of
one–dimensional variational schemes (Benedetti et al., 2003) or with fully–blown mesoscale models in 3D–Var
(Hu et al., 2006a,b) and 4D–Var (Sun and Crook, 1998; Wung et al., 2000). Chevallier et al. (2004) investigated
the capability of a 4D-Var system to assimilate cloud-affected satellite infrared radiances using observations
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from the narrow-band Advanced Infrared Sounder (AIRS). An attempt at exploiting visible and infrared cloudy
satellite radiances in 4D-Var variational assimilation has been made by Vukićević et al. (2004). In that study,
the authors use the Regional Atmospheric Modeling and Data Assimilation System (RAMDAS) 4D–Var to
estimate the cloud state from Geostationary Operational Environmental Satellite–9 (GOES–9) observations.
Their findings show an improvement in the model cloud forecast, through enhanced vertical mixing and the
coupling between initial conditions and observed state by the model dynamics. However, they also note that
observations that are more directly related to local temperature and humidity are also needed to better constrain
the system and reduce the errors. Lopez et al. (2006) also noted that in their 2D-Var assimilation of Atmospheric
Radiation Measurement (ARM) cloud radar retrievals.

To-date a large percentage of satellite observations affected by clouds are not included in global analysis
systems mainly because of the lack of suitable schemes to describe cloud processes in the assimilation with
the necessary accuracy. Moist physics schemes for variational data assimilation that permit to treat complex
cloud systems, while retaining the simplicity of being diagnostic and linearized, have been developed and are
now operational in the European Centre for Medium–Range Weather Forecasts (ECMWF) 4D–Var system
(Tompkins and Janisková, 2004; Lopez and Moreau, 2005). These developments have allowed the operational
implementation of the 1D+4D–Var assimilation of rain and cloud–affected brightness temperatures from the
Special Sensor Microwave/Imager (SSMI) (Bauer et al., 2006a,b). Results show a positive impact of these ob-
servations, especially in the redistribution of relative humidity in the Tropics, and consequently in the location
of the precipitating systems. Despite this major achievement, a large percentage of the satellite data that are
ingested in the ECMWF 4D-Var system is still screened for cloud and rain contamination, except for a few
microwave and infrared channels whose sensitivity peaks in the upper troposphere/stratosphere. As a result,
cloudy areas are still less constrained by observations than cloud–free areas.

In this study we attempt to demonstrate that the ECMWF 4D–Var system is technically ready to assimilate cloud
observations. This is also thanks to the development of the new linearized moist physics schemes. As a first
step, the visible cloud optical depths from the MODIS instrument on board of Aqua are used as observations.
While it is recognized that dealing with the raw radiance measurements through the appropriate observation
operators allows for a more consistent treatment of the observations within the model framework and a full
utilization of the model sensitivity to observations (Vukićević et al., 2004; Moreau et al., 2004), the use of
pre-processed cloud optical depths for testing purposes is more practical and less computationally demanding.
Observational operators for visible radiances and their corresponding adjoints have been developed and applied
in research contexts (Greenwald et al., 2002, 2004). However, in order to be used in an operational context,
there is the need to make them efficient as it has been done over the years for infrared radiative transfer codes
(Matricardi, 2005). It is envisaged that cloud retrievals will be replaced by the cloudy radiance observations for
assimilation purposes, but for the time being the cloud retrievals represent a good, largely untapped, source of
information on the cloud and the atmospheric state.

The outline of the paper is as follows. Section 2. describes the general methodology and briefly provides details
about the operational ECMWF 4D–Var system and the observation operators (cloud optical depth parametriza-
tions and moist parametrization schemes). The main section, 3., describes the setup for one–month assimilation
experiments with a brief introduction to the MODIS data and the discussion of the first–guess departures, of
the bias correction and of the observation and representativeness errors. Section 4. presents the outcome of the
cloud assimilation experiment with respect to a reference run. Several measures of analysis performance are
presented: from the standard assessment of an improved model fit to the assimilated observations to the valida-
tion against independent observations. The impact of the assimilation of cloud optical depth on key atmospheric
parameters such as temperature, humidity and ice water content (IWC) is also shown. Some issues with the
analysis of humidity are highlighted via comparisons with other assimilated observations which are sensitive
to moisture. Section 5. discusses the effect of the assimilation of cloud data on the medium–range forecast
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using standard meteorological scores. The closing section, 6., summarizes the main findings and presents open
questions and future perspectives of this line of work.

2. Methodology

a. The ECMWF operational 4D–Var

The ECMWF 4D–Var assimilation system is based on an incremental formulation which ensures a good com-
promise between operational feasibility and a physically consistent four–dimensional analysis (Courtier et al.,
1994). The cost function in the incremental approach is formulated as follows:���
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i ). The matrix Ri is the observation error covariance matrix, while B represents the background
error covariance matrix, formulated according to the “wavelet–Jb” method of Fisher (2003; 2004). A nonlinear
integration provides the linearization state - trajectory in the vicinity of which the model is linearized. The
departures are computed during the nonlinear integration at high resolution using complex non-linear physics
(as used by the forecast model).

Using the incremental approach, 4D-Var can be approximated to the first order as finding analysis increments
δxa

0 which minimize the cost function
�

. The minimization requires an estimation of the gradient of the cost
function. The gradient with respect to δx0 is computed efficiently using the adjoint model. The minimization
is solved using an iterative algorithm, based on the Lanczos conjugate gradient algorithm with appropriate pre-
conditioning. In order to reduce the computational costs in the operational 4D–Var system, the perturbations
δxi are computed with a tangent-linear model using simplified physics (Mahfouf, 1999; Janisková et al., 2002;
Tompkins and Janisková, 2004; Lopez and Moreau, 2005) at a lower resolution than the trajectory. The gradient
of the cost function is computed with the low resolution adjoint model which also includes simplified physics.
After the minimization, the trajectory and the departures are recomputed and a second minimization at a higher
horizontal resolution is run. The model and observation operators are linearized again around the current state
(Andersson et al., 2005; Radnóti et al., 2005). For this study we use a resolution of T511 (corresponding to
approximately 40 km) for the forecast, while the two minimizations are run at T95 ( � 215 km) and T159
( � 120 km). Moist physics are usually only activated in the second minimization, but in our configuration
it was necessary to turn on the linearized moist physics schemes in both minimizations. On average, 50–70
iterations are required to reach a satisfactory convergence of the minimization. Convergence criteria and a
detailed description of the incremental 4D–Var can be found in Fisher (1998) and Trémolet (2005).

The current assimilation window is 12 hours. Observations are ingested over the window and sub–divided into
time slots of half hour. The model fields, including cloud liquid and ice water contents and cloud cover, required
by the operators are interpolated at the observation location. This interpolation introduces a representativeness
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error which increases the error variance of the observations. This component of the error should not be neglected
and may be quite large for heterogeneous variables such as cloud fields. In this study we addressed this by
artificially increasing the observation error as described in section3.f.. However, this is not an entirely satisfying
solution. Recent efforts at ECMWF have shown that the representativeness error, in particular errors related
to interpolation of non-homogenous fields such as precipitation and clouds to the observation locations can
dominate the observation error (Philippe Lopez, private communication). An alternative to the interpolation
would be a weighted nearest neighbour approach within a certain radius of distance between model grid-point
and observation location. This approach is currently under development at ECMWF for the assimilation of
rainy brightness temperatures and could be adapted to the assimilation of cloud–related observations.

b. Observational operators

The core of the observation operator for the cloud optical depth are the diagnostic linearized cloud scheme
(Tompkins and Janisková, 2004) and the linearized convection scheme (Lopez and Moreau, 2005) providing
detrained convective cloud water as input to the convective contribution of the cloud scheme. These schemes
allow for a full representation of cloud systems in the context of the linearization approximations, and are tuned
to match the full nonlinear parametrization schemes. The main advantage of the linearized schemes is the
possibility to represent complex cloud and precipitation systems while retaining the computational efficiency
which is required to run the several iterations during the minimization of the cost function. The schemes were
first applied in the 1D+4D–Var assimilation of SSMI brightness temperatures and are currently fully operational
in the ECMWF 4D–Var.

The main outputs of the linearized schemes, liquid water and ice water contents, are passed to the optical depth
routine which computes the model equivalent of the observed optical depth at the observation location. This
routine uses the Slingo (1989) parametrization for the optical properties of liquid water clouds and Fu (1996)
for those of ice clouds. For liquid water clouds, the effective radius (re) is derived from the cloud liquid water
content following Martin et al. (1994) with the concentration of cloud condensation nuclei fixed at 50 cm� 3

over the oceans and 900 cm � 3 over the continents. For ice clouds, the effective size of the particles is a function
of temperature following Ou and Liou (1995).

Figure 1 illustrates the flow between the linearized moist parametrization schemes and the optical depth routines
in 4D-Var computation. During the minimization, the linearized cloud scheme with input from the convection
scheme provides the perturbations in cloud liquid and ice water content which are then passed to the tangent
linear version of the optical depth routine to compute the perturbation of optical depth. In the backward calcula-
tion, the gradient of the cost function with respect to the control variables is calculated using first the adjoint of
the optical depth routine to obtain the gradient with respect to the cloud liquid and ice water contents. The latter
is then passed to the adjoint of the cloud and convection schemes and used to compute the cloud contribution to
the gradient with respect to temperature and specific humidity, and through the convection scheme also to the
gradient with respect to the wind components. The final gradient of the observation cost function with respect
to the model state variables is transformed to the control–vector variables and passed together with the gradient
of the background cost function to the minimization algorithm. Minimization provides the analysis increments
δxa

0 to be added to the background xb
0 in order to obtain the model analysis.

As it can be seen from the flow diagram of Fig. 1, the control variables in the 4D–Var are temperature, hu-
midity, vorticity, divergence and surface pressure. The cloud gradients computed by the adjoint of the moist
parametrizations contribute directly to the gradients in temperature and humidity, and indirectly to the gradi-
ents in the other control variables, i.e. wind, through the coupling which takes place in the 4D–Var. Use of
a moist control variable which cannot directly take into account the cloud increments is a major limitation of
the current system. As a consequence the cloud–related observations can only impact the model indirectly and
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Figure 1: Flowchart describing the interaction between the linearized moist parametrization schemes and the optical
depth scheme in the context of the standard 4D–Var minimization problem. See text for explanations.

in a way which is largely determined by the local, regime–dependent cloud Jacobians (Fillion and Mahfouf,
2003). Recognising this limitation, and to allow for a more effective assimilation of cloud observations, Sharpe
(2006b,c) has implemented a total water control variable in the UK Met Office assimilation system. This vari-
able is used to analyze moisture increments representing changes in total water substance defined as water
vapor plus cloud liquid and ice water. More recently an incrementing operator for cloud fraction has also been
included (Sharpe, 2006a). It is envisaged that a similar approach might be taken at ECMWF to increase the
benefits of the assimilation of cloud–related observations, and improve background error statistics in cloudy
and rainy areas.

3. Data and description of experimental setup

a. MODIS observations

The data used in this assimilation study is the cloud optical depth product from the MODIS instrument flying
on board of Aqua. The cloud optical depth is retrieved from simultaneous cloud reflectance measurements in
various solar spectral bands. Specifically, the water–absorbing bands (1.6, 2.1 and 3.7 µm) provide an estimate
of the particle size while the non-absorbing bands (0.65, 0.86, and 1.2 µm) are chosen to minimize the effect
of surface reflectance and mainly provide information on the visible optical thickness (Platnick et al., 2003;
King et al., 2003). Most cloud level–2 products are provided at a resolution of 1 km. However, here we used
the latest release, collection 5, that also provides a summary file which contains both cloud and aerosol retrieved
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products at a resolution of 5 km at the standard reference wavelength of 0.55 µm (King et al., 2006). Before
entering the assimilation, the MODIS cloud optical depth observations are further averaged to a resolution of
25km. This is done to minimize the mismatch between observations and model resolution (T511, approximately
40 km). The model equivalent optical depths are calculated at 0.55 µm using the observation operator described
in the previous section.

b. Experimental setup

The experimental setup is similar to that of a former operational run at a resolution of T511. The incremental
4D–Var is initialized with a short forecast and all standard observations (conventional and satellite-based) are
used in the minimization. During each 12-hour assimilation cycle, over three million observations that have
passed the screening process are ingested in the 4D–Var. Some of this data is screened and/or thinned according
to the system requirements. Since data acquisition for MODIS optical depth is not automated as it is for other
observations, we processed only Aqua measurements for the month of April 2006. The data volume of these
observations amounts to approximately one hundred thousand optical depth data points per cycle. A pre–
screening is applied when the trajectory is run, and model optical depths smaller than 0.025 and larger than
100 are not included in the minimization as those are also the lower and upper limits, respectively, in the
MODIS files. We also screen observations at high latitudes, i.e. above 60� , to avoid spurious optical depth
retrievals over sea-ice. No further screening or thinning is applied to the averaged data. The minimization
is run with the linearized moist physics in both the low (T95) and higher (T159) resolution inner loops. The
cloud optical depths are included in the minimization via the Observational Data Base (ODB) as a special class
of observations. All statistics about the first guess and analysis departures are collected in the ODB as for
all other observations. The initial investigation was performed using the optical depth; it was then decided to
assimilate instead the decimal logarithm of the optical depth to limit the range of increments and to obtain a
more Gaussian distribution. Two sets of experiments were conducted with the logarithm cloud optical depth
variable: one with and one without bias correction. Below is the rationale for these choices.

c. Logarithmic optical depth

One of the main underlying assumptions for a well-behaved variational assimilation is that of Gaussian error
statistics for the background and observations errors as this implies that the cost function is quadratic and does
not have multiple minima. This assumption translates into the requirement for a Gaussian distribution of the
departures which represent the differences between the observations and their model equivalent. For variables
such as precipitation and optical depth, however, it is observed that the departure statistics diverge from the
Gaussian shape and are often skewed. The range of values that these departures can take is also wide, and that
implies even larger deviations from “gaussianicity”. Some authors suggest the use of change of variables to
reduce the range of departures and improve their distribution. One of the most common choices for positive–
definite variables, is to use the logarithm in decimal base of the model and observed quantities, as in Hou et al.
(2004) for the assimilation of precipitation. Based on these considerations we decided to use this approach and
develop the cloud assimilation in terms of logarithmic optical depth. Note that the errors on the logarithmic
variables need also to be expressed in that form. Following Cohn (1997), we re–assigned errors on logarithmic
optical depth according to the following formula:

rLog � �
Log10

�
1 � ε2

r � (2)

where rLog is the error variance of the logarithmic optical depth and εr is the relative error on physical optical
depth.
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d. Monitoring of the first guess departures

When a new observation is introduced in the 4D–Var, a preliminary monitoring is performed by looking at
the first guess departures which represent the difference between the observations and the model background
in observation space. In an ideal system, the distribution of these departures should be centered around zero
(unbiased model/observations) and Gaussian in shape. However the most likely scenario is that either the
observations or the model, or both present biases. For the observations, the most common sources of bias are
calibration errors of the instrument, scanning angle errors, and/or errors in the radiative transfer models that
translate the atmospheric signal in radiances, which is what is measured by the space-borne instruments. All
of the above sources of biases introduce biases in the retrieved cloud optical parameters. Model systematic
errors are more difficult to describe as they can be due to a number of reasons ranging from inaccurate model
parametrizations to errors introduced by the numerics. The weak–constraint 4D–Var addresses the problem of
the inclusion of model error as part of the estimation problem (Trémolet, 2005). The discussion of this aspect
of 4D–Var is, however, beyond the scope of the current study.

The assumption for the strong–constraint 4D–Var assimilation is that the first guess departures are unbiased,
hence that diagonal elements of the observation error covariance matrix only describes the random component
of the error. This is why a lot of effort is generally put toward either eliminating the biases at the preprocessing
stage or in developing a bias model for the different sets of measurements that can be used to remove those
biases in the 4D–Var context. This is the approach taken at ECMWF where a variational bias correction is
implemented, and the coefficients describing the bias model are estimated as part of the minimization problem
(Dee, 2004; Auligné et al., 2007). In our study, however, we could not make use of this method, as defining
a bias model for cloud observations such as optical depth is not a trivial task. We then decided to run an
experiment without bias correction and to investigate the first guess departure statistics with the purpose of
modelling the optical depth bias. The first result that emerged was that observations over land had a much
larger bias than the observations over ocean. This different behaviour could be due to the differences between
the optical depth parametrization over land and over ocean. This aspect can be tested by choosing another set
of parametrizations to see whether the bias is reduced, also by applying a tuning which is appropriate for the
assimilation, and will be explored in future studies. As a first step, however, we decided to assimilate cloud
optical depth observations over ocean only.

e. Bias correction

Figure 2a illustrates the nature of the bias problem. It shows the bias over ocean for over two million points
accumulated during a two-week period (1-15 April 2006) from the monitoring run. As shown in the picture,
the distribution of the first guess departures (i.e. the differences between observation and first guess) is not
perfectly Gaussian (note the tail on the right hand side of the histogram) and the mean is not zero. It was
decided to apply a simple bias correction as a function of the model optical depth in logarithmic space. The
range of logarithmic optical depth (-1.6 to 2.0) was divided in eighteen bins and for each bin the average of
the corresponding first guess departures was calculated. These averages were subsequently subtracted from the
model optical depths falling in the specific bin. As a consequence the bias–corrected departures have a lower
mean bias and the shape of their distribution is more Gaussian, as shown in Figure 2b. The bias as a function of
optical depth is shown in Figure 3. Note that negative optical depths in logarithmic space are synonymous with
optical depth smaller than unity in physical space. The shape of the bias curve is rather smooth. On average,
the model has a positive bias for low optical depths, i.e it underestimates the cloud optical depth, whereas it has
a negative bias for large optical depths, i.e. it overestimates the optical depth with respect to observations. In
what follows, the term optical depth will signify logarithmic optical depth, unless otherwise stated.
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(a) (b)

Figure 2: Probability distribution functions of first–guess departures in logarithmic optical depth (unitless): (a) before
bias correction and (b) after bias correction.
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Figure 3: Bias in logarithmic optical depth as a function of the model logarithmic optical depth. See text for explanations.

f. Observation and representativeness errors

Although MODIS collection 5 cloud optical depths comes with a pixel–by–pixel uncertainty (King et al., 2006),
initial assimilation tests were performed using an assumed value of 20% error on optical depth, translated using
Eq. (2) into an error in logarithmic optical depth. This value was chosen as inclusive of various error sources
such as the spectral albedo uncertainty (15%) and the calibration and radiative transfer model uncertainty (5%),
as suggested in King et al. (2006). Additionally, the error was increased to 50% to partially account for rep-
resentativeness errors deriving from the interpolation to observation location and those inherent to the optical
depth observation operator and the parameters that describe it. For departures larger than 50 in physical space,
an extra 50% for a total error of 100% was added to restrain the model within the assumptions of the incremen-
tal formulation, which assumes small departures from the model state. By doing so, large departures in optical
depth are greatly penalized. We also increased to 150 % the error for retrieved values of optical depths greater
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than 25 in an attempt to account for errors due to instrument saturation.

4. Assimilation results for April 2006

This section describes in detail the results for an assimilation run which included the bias correction for cloud
optical depth. Various measures of the performance of the analysis are presented and discussed, including
comparisons with independent observations.

a. Overview of the fit to observations

The first comparison that we made can be described as a sanity check: the analysed optical depths are plotted
as a function of the observations and compared with the first–guess. In a successful analysis, the departures are
smaller than in the first–guess, hence the analysis better matches the observations. Figure4 shows scatterplots
of first–guess and analysis plotted against observations. Due to the large data volume, to produce this figure we
used only fifteen days in the middle of April. In panel (a) all data points are included in the first guess statistics,
prior to the bias correction discussed in section 3.e. Panel (b) shows the first guess statistics after application
of the bias correction. It is possible to notice a large residual bias which indicates that the bias correction was
not as effective as hoped for. This could be due to the fact that, when the number of first–guess optical depth
values in a specific bin is low, the mean for that particular bin is not representative, hence a correction based on
that estimated mean may not be suitable for all optical depth values. In fact, we can notice that the average bias
represented by the black solid line in Fig. 4 is worse when the number of points in the optical depth interval
is low (blue colours in the same figure). However, the total bias after the correction is 0.22 as opposed to a
value of 0.35 prior to the correction. This indicates that the correction worked to a certain degree. Also Root
Mean Square (RMS) error and correlation with observations are improved. This suggests that the simple bias
correction which has been implemented is somehow effective in reducing systematic errors in the model optical
depth. However, the persistence of the residual bias indicates that refinements to this correction are necessary.
The analysis is shown in panel (c). The correlation with observations is much improved in the analysis. A
small reduction in bias and RMS with respect to the first guess departures is also noticeable. However, these
improvements in bias and RMS are small, consistently with the fact that the analysis is not supposed to correct
for biases and confirming the need for a better a priori bias correction. Overall this scatterplot confirms that the
analysis draws closer to the observations.

b. Impact of cloud assimilation on temperature, humidity and cloud parameters

In parallel with one month of cloud assimilation for April 2006, a reference run of the same length was also
performed with an identical set–up to the cloud assimilation experiment, except for the use of MODIS data, to
provide a benchmark for the impact of the introduction of cloud optical depths. Figure 5 shows the mean zonal
differences between experiment and reference for temperature and specific humidity. These were averaged
over the month of April and are shown as a function of pressure. The differences in specific humidity have a
distinct vertical structure with a tendency for the experiment to be drier at upper and lower tropospheric levels
and moister than the reference at middle levels across all latitudes up to � 40 � S/N. Above this latitude, the
prevalent pattern is that of larger moisture values in the experiment with respect to the reference. The pattern
in temperature is more noisy but there is a distinct dipolar structure in the experiment of cooling at upper levels
down to 750 hPa and warming below 750 hPa. Based on these impact plots, it appears that any changes induced
by the cloud observations above 600 hPa reflect mainly a balance between a decrease in temperature which
favours cloud formation and a reduction in specific humidity which opposes cloud formation. Between � 600

Technical Memorandum No. 515 9



Assimilation of MODIS cloud optical depths in the ECMWF model

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
FG

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

O
B

S

Period = 2006040500 to 2006042000;     All Data
Scatterplot of OBS versus
FG

1
2
5
10
20
40
75
125
150
200
250
500
750
1000
1500
2000
2500

Maximum number per bin =    2066
Total number = 2978144

corr. coef. =  0.410
RMS =   0.68
BIAS (y-x)
=   0.35

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
FG

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

O
B

S

Period = 2006040500 to 2006042000
Scatterplot of OBS versus FG

1
2
5
10
20
40
75
125
150
200
250
500
750
1000
1500
2000
2500

Maximum number per bin =    1908
Total number = 2393230

corr. coef. =  0.480
RMS =   0.57
BIAS (y-x)
=   0.22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
ANA

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

O
B

S

Period = 2006040500 to 2006042000
Scatterplot of OBS versus ANA

1
2
5
10
20
40
75
125
150
200
250
500
750
1000
1500
2000
2500

Maximum number per bin =    2235
Total number = 2393205

corr. coef. =  0.672
RMS =   0.51
BIAS (y-x)
=   0.21

(a) (b) (c)

Figure 4: Scatterplot of (a) first–guess before applying bias correction, (b) first–guess after bias correction was applied
and (c) analysis versus observations of logarithmic optical depth (unitless). The colour bar represents the population in
each bin of logarithmic optical depth.

hPa and 750 hPa temperature and moisture changes seem to be more in phase as to enhance cloud formation,
whereas at lower levels the situation is similar to that at upper levels.
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Figure 5: Zonal differences in temperature (K, left panel) and specific humidity (g/kg, right panel) between experimental
and reference run averaged over the month and plotted as a function of pressure (hPa).

As a response to these changes in temperature and specific humidity in the analysis, there is a noticeable
redistribution in Ice Water Path (IWP) and Liquid Water Path (LWP) at all latitudes which can be observed in
the maps of monthly averages of the differences between experimental and reference run, shown in Fig. 6. Note
especially the increase in LWP along the storm tracks and the decrease over the extra–tropical Pacific Ocean.
IWP changes appear to have a more varied structure.

From these figures we can conclude that the assimilation of cloud optical depths has a large impact on the tem-
perature, moisture and cloud fields. To ascertain whether this impact is positive, negative or neutral we compare
both reference run and experiment with other assimilated observations in the 4D–Var or, when possible, with
independent observations.
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Figure 6: Horizontal maps of the differences in kg/m2 of integrated liquid water path (top panel) and ice water path (lower
panel) between experimental and reference run averaged over the month.

c. Comparisons with independent cloud observations

Comparisons in Ice Water Content (IWC) between the reference run and the experiment were carried out
using independent data retrieved from the Microwave Limb Sounder (MLS) on board of Aura (Li et al., 2005,
2007). The MLS, operational since August 2004, has five radiometers measuring microwave emissions from the
Earth’s atmosphere in a limb-scanning configuration to retrieve chemical composition, water vapor, temperature
and cloud ice. The retrieved parameters consist of vertical profiles on fixed pressure surfaces having near-global
(82 � N-82 � S) coverage. The MLS IWCs are derived from cloud-induced radiances (CIR) using modelled CIR-
IWC relations based on the MLS 240 GHz measurements. The IWCs have a vertical resolution of � 3.5 km
and a horizontal along-track resolution of � 160 km for a single MLS measurement along an orbital track.
This study uses MLS version 1.51 IWCs (Livesey et al., 2005) which are similar to the IWCs discussed in
Li et al. (2005). In this version, the estimated precision for the IWC measurements is approximately 0.4, 1.0
and 4.0 mg/m3 at 100, 147, and 215 hPa, respectively, which account for combined instrument plus algorithm
uncertainties associated with a single observation.

Figure 7 shows a global map of the MLS IWC field at 215 hPa and the corresponding fields from the reference
run and the cloud assimilation experiment. Percentage differences between MLS retrievals and model fields are
also shown. From these it is possible to see qualitatively that the IWC from the cloud assimilation experiment
is closer to the MLS observations than the reference run particularly over the equatorial West Pacific. In general
assimilation of MODIS optical depths tends to reduce the values of 215 hPa IWC where these were high in the
reference run. The signature of the Inter–Tropical Convergence Zone (ITCZ) is improved in the Atlantic and
the Indian Ocean, and to a lesser extent over the Central Pacific.

This indicates that the cloud observations are effective in modifying the distribution of total tropospheric con-
densate in a manner that appears consistent with the MLS observations. Note for example the pattern of
decrease in IWP at 5N over Indonesia in Fig. 6 where the reference run showed a moist bias in IWC at 215 hPa
with respect to the MLS observations.
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(a)

(b) ECMWF Model - CNTRL run (c) ECMWF Model - EXP run

(d) CNTRL run - MLS obs (e) EXP run - MLS obs

Figure 7: Maps of Ice Water Content at 215 hPa: MLS retrievals (top panel), reference run (left panel), and cloud
assimilation experiment (right panel). Units of IWC are mg/m3. The bottom panel shows the relative percent error with
respect to the MLS retrievals of the reference run (left) and the cloud assimilation experiment (right), respectively. Plots
were courtesy of Frank Li, Jet Propulsory Laboratory, CA, USA.

d. Comparisons with temperature and moisture–related observations

This section shows a series of plots that compare the reference and the experiment analyses with observations.
The comparison focuses on the Tropics as this region appears to be greatly affected by the cloud assimilation
(see impact plots of section 4.b.). However similar trends are also seen for other regions.

Figure 8 shows statistics for Meteosat brightness temperature (Tb) observations over the Tropics in the water–
vapor channel. These observations are not included in the minimization and can be considered as an indepen-
dent source of validation for the first–guess and analysis. The shape of the first–guess and analysis departures
for this Meteosat channel show a positive impact of the inclusion of cloud data. The mean of the first guess
departures for the reference is 0.626 as opposed to 0.533 for the cloud assimilation experiment, indicating a
better agreement of the background with the observations. For the analysis this mean value of departures is
still lower for the cloud assimilation experiment (0.723 versus 0.806 for the reference). However, these mean
values are larger than those of the first guess departures indicating a slight shift of both analyses from these
observations that were not assimilated.

Figure 9 displays comparisons of the first guess (background) and analysis departures averaged over the whole
month with respect to High Resolution Infrared Radiation Sounder (HIRS) Tb observations in the Tropics.
These observations were included in the assimilation. Bias with respect to HIRS observations appear improved
in the cloud assimilation experiment, particularly for channel 14 and 15. The bias correction applied to the
observations and now estimated on–line in within the 4D–Var assimilation (Dee, 2004; Auligné et al., 2007) is
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Figure 8: Statistics for Meteosat Tb observations in the water vapor channel over the Tropics. Reference run is in red and
experiment in black. Left panel shows statistics for the background departure and right panel for the analysis departure.
Statistical values are displayed for the reference run (in brackets) and for the experiment on the top of each panel.

also reduced for the cloud assimilation experiment with respect to the reference run (magenta and green dashed
lines in the plot), indicating that the model configuration with assimilated cloud data had a lower bias with
respect to the HIRS observations. However, the standard deviation with respect to HIRS observations is not
particularly improved in the humidity channels (11 and 12).
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Figure 9: Standard deviation (left) and bias (right) of the background (solid line) and analysis (dashes line) departures
from the HIRS brigthness temperature observations in the Tropics. Reference run is in red and experimental one in black.
Magenta and green lines indicate the estimated bias correction for the HIRS observations for the cloud assimilation
experiment and the reference run, respectively.

The adjustments in humidity induced by the cloud assimilation have an impact also on the clear–sky Tb which
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provide information on the total column water vapor (TCWV). This impact is, however, not always positive
as shown in Fig. 10. In this figure bias and standard deviation with respect to the Special Sensor Microwave
Imager (SSM/I) clear–sky Tb observations in the Tropics are displayed. In this case, it is the reference run that
performs slightly better than the cloud assimilation experiment and the standard deviation of the reference run
is smaller than that of the cloud assimilation experiment. The bias correction for the observations is smaller in
the reference for some channels, indicating an overall better agreement between observations and first guess.
However, the two analyses are almost identical in terms of final bias. Comparisons with TCWV derived from
rainy–affected SSMI Tb largely confirms the same behaviour.
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Figure 10: Same as Fig. 9, but for SSMI clear-sky Tb observations.

However, we observed that there are virtually no differences as far as it concerns bias and standard devia-
tion between the reference and the experimental runs when considering a sensor which is more sensitive to
temperature (e.g. Advanced Microwave Sounding Unit - AMSU-A).

The performance of two experiments is also compared in terms of relative humidity to radiosonde (TEMP)
observations. Figure 11 shows bias and standard deviation of first guess and analysis for the control and the
cloud assimilation experiment with respect to relative humidity based on temperature and humidity measure-
ments. In this case a positive impact of the cloud observations can be noted, with a shift toward smaller negative
biases at most levels for the cloud assimilation experiment. The analysis obtained from the experiment is also
remarkably improved with respect to the reference run especially in the lower troposphere (1000 to 700 hPa).
However, in terms of standard deviation the analysis from the cloud assimilation experiment performed worse
than the reference run.

Overall these results show that the assimilation of cloud observations tends to affect the moisture balance in a
slightly negative way. The assimilation experiment performs neutrally or worse than the reference run when
compared with other assimilated observations from moisture–sensitive instruments, except for the positive
impact shown in the comparison with the Meteosat data. The behaviour in temperature is mostly neutral.

5. Impact of the cloud assimilation on the forecast

The root mean square error, computed with respect to observations, is used as a measure to quantitatively com-
pare the ten–day forecast from the reference run to that from the experiment which included cloud observations
in the analysis. Figure 12 shows the mean RMS, averaged over the whole month of April, as a function of
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Figure 11: Same as Fig. 9, but for relative humidity based on TEMP temperature and humidity measurements.

forecast day for temperature at two levels, 850 and 500 hPa respectively, for Northern Hemisphere, Southern
Hemisphere and Tropics. The impact of the assimilated cloud data on the Northern Hemispheric temperature
is neutral with the two lines almost overlapping both at 850 and 500 hPa. For the Southern Hemisphere, the
impact on temperature at 850 hPa is neutral up to forecast day 6. After that the control run shows a lower
RMS than the cloud assimilation experiment. A similar behaviour is observed in the Tropics at 850 hPa with
a slightly negative impact of the cloud assimilation on the forecasts. At 500 hPa and for short–term forecasts
(day 1 to 4), the cloud assimilation experiment shows an overall lower RMS than the control.

A similar impact of the assimilated cloud data on the forecast is shown in Fig. 13, but this time for the wind
variable at 850 and 700 hPa. The impact of the assimilation is neutral in the Northern Hemisphere, slightly
positive in the Tropics and neutral to negative in the Southern Hemisphere.

Generally, the Tropics appear to be more influenced by the assimilation of cloud data than other areas, as
already emphasized. The significance of this impact in the Tropics is shown in Figure 14 for temperature and
wind RMS errors at the selected pressure levels over the period of 10 days. Statistical significance tells us
how likely we would be to get differences between the groups that are being sampled (in our case difference
between RMS errors of two different experiments) that are as large or larger than those we observe. The chosen
confidence level 90% indicates that the probability of the observed behaviour being due to pure chance is less
than 10% (or there is 90% chance of observed behaviour being true). The difference between two samples
is computed as RMS of the reference run minus RMS of the experimental run, so a positive impact coming
from the assimilation of cloud observations is marked by positive values, while the opposite is true for negative
values. An inspection of the significance plots indicates that the impact of the cloud assimilation in the Tropics
is positive, especially for temperature in the mid-troposphere at the beginning of the forecast period.

6. Discussion and conclusions

In this study, we used the ECMWF 4D–Var system to assimilate, for the first time on a global scale, MODIS
cloud optical depth observations. The version of the 4D–Var included new linearized moist physics schemes
that allow the treatment of cloud fields in the minimization. As the cloud variables are not part of the control
vector, the increments which come from the cloud departures are translated into increments in temperature
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Figure 12: The RMS errors of 850 hPa temperature (top) and 500 hPa temperature (bottom) for a set of 30 forecasts
compared to the observations. Control experiment based on the operational cycle (red solid line) and experiment with
4D-Var of cloud optical depth (blue dashed line). Areas shown are: Northern hemisphere (left), Southern hemisphere
(middle) and Tropics (right).
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Figure 13: Same as Fig. 12, but for the RMS errors of 850 hPa and 700 hPa vector wind.

and specific humidity via the adjoints of the moist physics schemes. MODIS optical depths over ocean were
added to the ECMWF observation database for the month of April 2006. Experiments were conducted to
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Figure 14: Significance of the impact coming from the assimilation of MODIS cloud optical depths in 4D-Var system for
the period of April 2006 in the Tropics. The forecasts are compared with respect to the observations for 30 cases and
significance is based on RMS error differences. Top panel shows the significance for 850 hPa and 500 hPa temperature,
bottom panel for 850 hPa and 700 hPa vector wind.

assert the technical feasibility of the cloud assimilation, to monitor the optical depth bias in the ECMWF
background fields and to find the most suitable model configuration for this type of exercise. A bias correction
as a function of optical depth was implemented and a logarithmic variable was used to limit the range of optical
depth departures. Results show that this bias correction worked only partially and needs to be revised in future
studies. Despite the residual first–guess bias, the analysis is shown to draw closer to the observations and to
improve the correlation between model and observed optical depth.

Results for the month of April 2006 show a positive impact of the cloud observations on the distribution of the
Ice Water Content, particularly in the Tropics, as shown by comparisons with the Microwave Limb Sounder re-
trievals. However, comparisons with other assimilated observations show that the changes in specific humidity
and TCWV induced by the assimilation of MODIS cloud optical depth retrievals, do not always improve the
analysis fit to the observations. For sensors such as SSMI, the reference run performs noticeably better than
the cloud assimilation experiment, indicating an imbalance in TCWV caused by the introduction of the cloud
observations. The impact on temperature appears to be more neutral. This behaviour is not entirely inconsistent
with the improvements in IWC described above. In fact, especially at the Tropics, at upper tropospheric levels,
changes in the cloud fields can be achieved by small changes in temperature. Hence, even if the moisture field
is affected in a slightly negative way, the cloud fields can still be more realistic when the cloud observations are
assimilated due to temperature changes.

The impact of the cloud assimilation on the ten–day forecast as investigated using the RMS and the significance
plots, appear to be positive for upper–level temperature in the Tropics, especially at the beginning of the forecast
period. The impact is neutral for the model winds.

These results show that the ECMWF 4D–Var is approaching rapidly the level of technical maturity which is
necessary for global assimilation of cloud related information, also thanks to the developments of efficient
and accurate linearized moist parametrization schemes. Improvements in several areas are still necessary.
For example, alternatives to the current interpolation method could ensure a better representativeness of the
model cloud optical depths. At present, the cloud IWC and LWC are interpolated to the observations locations
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as usually done in the operational data assimilation system. While this procedure might be satisfactory for
more homogenous fields such as temperature, it might be less appropriate for cloud variables. Acknowledging
this problem, an interpolation method for the assimilation of rainy radiances, which is based on weighing the
contributions from all observations within a specific radius according to the distance from the model grid–point,
is under investigation. This solution might also be beneficial for the cloud optical depth.

Improved parametrizations for the optical depth observation operator will allow better use of the data, especially
over land. In the current study, it was found that the optical depth bias over land was larger than over ocean.
It is known that cloud optical depth parametrizations take into account the fact that effective particle is larger
and number concentration is smaller over ocean than over land due to the presence of fewer cloud condensation
nuclei. To account for this, two sets of parameters for land and ocean are used in the cloud optical depth
parametrization. These parameters could be still tuned to better match the observed optical depths. This could
be addressed in a future study.

Developments in the inclusion of a total water variable in the control vector will also help in exploiting the
information contained in the cloud observations. The current assimilation system uses humidity (in the form
of normalized relative humidity - Hólm et al., 2002), temperature, surface pressure, vorticity and divergence as
control variables. The linearized large–scale and convection schemes transfer increments derived from cloud
observations into increments in the control variables. In this way, the contribution from cloud observations
is included only indirectly in the 4D–Var. With the introduction of a total water variable, the link between
cloud–related observations and control variables will become more direct, possibly avoiding problems in the
redistribution of moisture increments between saturated and sub–saturated regions and hence improving the
impact of the cloud data.

Furthermore, the use of weak–constraint 4D–Var to account for model systematic errors could also help with
the problems emphasized in the changes in moisture induced by the cloud observations. At present the model
is assumed to be error–free and in the context of the incremental 4D–Var only small departures from the model
state are allowed (Andersson et al., 2005). Moreover, the whole 4D–Var system is somewhat “tuned” to clear–
sky observations which represent the vast majority of observations integrated in the assimilation. When cloud
observations are introduced the balance in the model background is perturbed and large increments in the
control variables might occur. However, since there is no inclusion of model error, the system is not designed
to deal with these large departures which are in contrast with the underlying assumption of the incremental 4D–
Var. The lack of treatment of model error in the 4D–Var is highlighted by the introduction cloud observations
as the model error is more likely to be larger for this type of model fields rather than more homogenous fields
such as temperature and specific humidity. For these reasons, the full benefits of cloud assimilation will be
more likely realized within a weak–constraint 4D–Var system.

Improvements notwithstanding, this study demonstrate the feasibility of global cloud assimilation in a numer-
ical weather prediction model. The technical developments described in this paper pave the way for future
assimilation of cloudy radiances which, in turn, will allow a more comprehensive exploitation of satellite data.
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Tompkins, A. M. and M. Janisková, 2004: A cloud scheme for data assimilation: Description and initial tests,
Q. J. R. Meteorol. Soc., 130, 2495–2517.
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Županski, D. and F. Mesinger, 1995: Four-dimensional variational assimilation of precipitation data, Mon. Wea.
Rev., 123, 1112–1127.

Technical Memorandum No. 515 21


	1. Introduction
	2. Methodology
	a. The ECMWF operational 4D--Var
	b. Observational operators

	3. Data and description of experimental setup
	a. MODIS observations
	b. Experimental setup
	c. Logarithmic optical depth
	d. Monitoring of the first guess departures
	e. Bias correction
	f. Observation and representativeness errors

	4. Assimilation results for April 2006
	a. Overview of the fit to observations
	b. Impact of cloud assimilation on temperature, humidity and cloud parameters
	c. Comparisons with independent cloud observations
	d. Comparisons with temperature and moisture--related observations

	5. Impact of the cloud assimilation on the forecast
	6. Discussion and conclusions
	7. Acknowledgements

