WNANVHOWIWN 1VDINHD4L

3

/1

Fast mixed radix real
Fourier transforms

C. Temperton

Research Department

January 1983

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

Abstract

It is shown that the self-sorting variants of the mixed—radix'FFTlélgorithmA
may be specialized to the case of real or conjugate-symmetric input data."In4
comparisdn with conventional procedures, savings of around'20%'are achieved in
terms of operation counts. A multiple real/half-complex transform package on
the Cray-1, based on the algorithms described here, achieves a 30% saving in
CPU time compared with a package using conventional algorithms. A similar

package has also been implemented on the Cyber 205.

1. INTRODUCTION

In a previous paper [8], the Fast Fourier Transform (FFT) algorithm was
derived in terms of a matrix factorization. Particular emphasis was laid on
self-sorting variants of the algorithm, which eliminate the need for an
explicit data permutation before or after the transform. The algorithms in
[8] related to transforms of complex data, though it was mentioned that often
the data to be transformed are real or conjugate-symmetric; certainly this is
true of all the heteorological applications described. Thus we need. to

compute:

x, =) c_ exp(2ikm/N), o < § < N-1 (1)
J k=o k

or its inverse,

N-1
e, = ;—E X, exp(-2i3km/N), o € k < N-1 (2)
j=o

where the data Xy are real, and the Fourier coefficients Cx satisfy the

relationship cy_j = o *

Real/half-complex transforms are usually implemented by adding a pre- or
post-processing step to a standard complex FFT; two such prdcedures were
given by Cooley, Lewis and Welch [3]. For example, to implement Eqg.(2) for
X4 real we can form the complex sequence

z, = x ;0 € 3§ < N/2-1,

+ ix
3j 23 23+1
perform a complex FFT of length N/2, and recover the coefficients cp
through a post-processing step which requires (2.5N-6) real additions and (N-
4) real multiplications. Alternatively, to transform two independent sets of

real data x5 and Y4r We can form the complex sequence

z, = xj + iyj r 0% j < N-1,

perform a complex FFT of length N, and obtain the corresponding Fourier

coefficients through another post-processing step. The operation count per

real transform is almost identical to tha£ for the first procedﬁre-

These techniques require either that N is an even number, or that the number
of transforms to be performed is even. Usually this is only a minor nuisance,
but the point to be made here is that in circumstances where speed is

essential, faster alternatives to these procedures exist.

Bergland,[f,Zj, buiiding on an idea credite& to Edsan, presented a more
efficient algorithm. If a real déﬁa éequence is used as inéut to a cémplex
FFT algorithm, then about half the computation is redundént. By pruning out
these redundant operations, a faster procedure than those presented in [3] is
obtained. Bergland's algorithms were specializations of the Cooley-Tukey [4]
and Gentleman—Sande [5] variants of the FFT, and thus required data
permutations before or after the traﬂsforms. >Also, heygnly gave details for
the case N=2P, though the possibility of extending the procedure to thg more

general case was mentioned.

In this paper we show how to specialize the self-sorting mixed-radix
algorithms of [8] to the real/half-complex case. The reduction in the
operation count compaxed with the procedures of [3] is shown to be typically
20%, ana savings of around 30% are obtained in the execution-time for a
real/half~complex FFT package on the Cray-1, ‘as used for the meteorological

applications at ECMWF described in [8].

2. PRINCIPLES OF THE ALGORITHM

In [8], Eq.(1) was rewritten as x = Wy gi the discrete Fourier transform
(DFT) matrix Wy is defined by [Wyl (j,k) = w3X where w = exp(2im/N)

and the rows and columns of Wy are indexed from 0 to N-1. The FFT

algorithms were derived from the matrix factorization:

W o= x1)PP P (w x1) . ‘ (3)
Pgq g P g . q b q : S H
where W Wq are the DFT matrices of order P,qi IP' Iq are the
corresponding identity matrices; and pP , DP are permutation and
. oo) g qg. : R

diagonal matrices defined in [8].

In this paper we shall also need the corresponding result for Eq.(2), which
can be written (dropping the scallng factor) as g = WN %X where WN 1s the

complex conjugate of WN' From (3) we have 1mmed1ately

ﬁ = (ﬁ x I

P -p -
P W I ~ . (4
Pq q P) g Dq (p * q) ' (4)

(Hexre Bi is the complex conjugate of Dz).
As in [8B], Eq.(4) can be extended to the multiple-factor case in several
different ways. For the self-sorting decimation-~in-time variant, let

N e = 2 = <3< m = N .
N n.n, n . 21 1, nilifor 1 i k, and m, N/R.i+1

Then the general form is given by

W =T T «e T T
N k k-1 271 : . Do :
| e | (5)

(6)

-
u
=
x
H
C]

o1
=]

x

H

In connection with self-sorting decimation in time, it was noted in [8] that
for example in the case N = pgr, the first stage consists of DFT's of length p
on gr interleaved samples of the data; in the second stage these are

combined into DFT's of length pg on r samples of the data, and in the final
stage these are combined into a single DFT of length pgr. The same is true of

the algorithm given by (5) and (6). To be specific, let

L0 L1 ‘;'5(1-1)

2 g1 £ i
Then
(i) =
2

~ Tier My

1]
=
»%
-

M

{7}

Proof: Eq.(7) is true for i=0, since £;=1, m,=N. Suppose Eg.(7) holds

for i=1. Then

(i) - (i-1) _ -
z = Ti z = Ti (Wl_ X Im)z,

by inductive hypothesis.

Using the definition of T;, this can be written as
2 —Zi _
(w .,x T ..)(Pn_ Dn'_x Im,)(wl. x Im.)z,
i i i i i i i-1

Since &3 my = N/nj and m, , = myn; this becomes

. (M, . , x Im.)(wk.x Im.n?g
i ivi i i i i i1

=i -
_ (BT D) (W x In_)} x I)z
1 1 1 1 1 1 1

as required, using Eq.(4) with p=%j,q=nj and &j,;=n;%;.

Since fx4+1 = N and my =1, Eg.(7) implies that E(k) = ﬁﬁg, so the

above argument constitutes a formal inductive proof that the whole

works.

algorithm

The significance of Eq.(7) in the present context is- as folloys,

Suppose E}o) is a vector of real numbers; Then E(if consists of my
interleaved inverse DFT's of length 2i+1; each of these is a transform of
real data, and is therefore conjugate~symmetric. Tt follows that g(i)
contains only N independent real numbers for o % i < k.. The specialization of
the complex FFT algorithm to the real/half-complex case depends on the fact
that only N real numbers need be specified at each stage; thef?missing"

numbers are either zero imaginary parts or the conjugates of complex numbers

already specified.

3. ROUTINES FOR THE REAL/HALF-COMPLEX CASE

The specialization of the algorithms given in [8] to the reai/half—complex
case is most easily described in terms of Fortran routines. We first give a
routine for self-sorting decimation in time applied to the inve;se transform‘

of complex data.

Suppose that the factors of N have been stored in an array IFAX(1) to

IFAX(NFAX), and that a complex array of trigonometric function values has been

defined by
TRIGS(K+1) = exp(2iKr/N) , o € K € N-1
The data to be transformed is in an array A, and a work array C is provided.

Each array acts alternately as input and output for successive stages of the

algorithm. The FFT routine is then given by:

c DECIMATION IN TIME
COMPLEX A(N), C(N), TRIGS(N)
INTEGER IFAX{NFAX)
LA=N
DO 14 I = 1,NFAX
IFAC=IFAX(I)
LA=LA/IFAC
CALL PASS(A,C,TRIGS,IFAC,LA,N)

C [now reverse rdles of A and cl

14 CONTINUE
STOP
END
The subroutine PASS takes the following form:

c DECIMATION IN TIME FOR INVERSE TRANSFORM
SUBROUTINE PASS(A,C,TRIGS,IFAC,LA,N)
COMPLEX A(N), C{(N), TRIGS(N)
’M=N/IFAC

fod Define IFAC base addresses in ‘A;
IA=f, IB=1A, IC=2?LA, ID=3*LA,.5.

Cc Define IFAC base add.re;ses in C
JA=@, JB=M, JC=2%*M, JD=3*M,...
I=1
J=1
JUMP=(IFAC-1)*LA
DO 2@ XK=§,M-LA,LA
Do 14 I=1,LA
¢ (3)=W(IFAC)*(R(K)*A(I))
I=I+1
J=J+1

1§ CONTINUE

I=I+JUMP

2¢ CONTINUE
RETURN
END
In the inner loop, W(IFAC) is the inverse DFT matrix of order IFAC, Q(K) is
the complex conjugate of the diagonal matrix Q(K) given by
Q(K)=diag(TRIGS(1), TRIGS(K+1), TRIGS(2*K+1),...),

A(I) and E/(J) are vectors of length IFAC defined by

A(IA+I) C(J24+T)
A(IB+I) C({(JIB+J)
A(I) = A(IC+I) |,C(T)= | C(ICHD)

Suppose now that we apply the routine given above to data which is initially
real (Fourier analysis). As shown in the previous section, the vector
E(i) of Eg.(7) consists of m; interleaved complex conjugate

(i-1)

sequences, each of length 2i+1. The first m, elements of z

1=1

are therefore real. IFf Ki is odd, these are followed by mi;

1 (Ki—l)/2
complex elements, and the remaining mi_l(li—l)/z elements are their

complex conjugates, If li is even, these complex conjugate sequences

are separated by a further m_y real elements.

The ith call of subroutine PASS computes g(i) from 5(1'1), and

IFAC*LA corresponds to mi—l' During the first pass through the outer.loop
(K=0), the elements of 5]1) are taken from the first IFAC*LA =ﬁi_1

elements of E(i'1). The vectors A(I) are therefore real; ©(0) is the
identity matrix, and the results are conjugate-symmetric, e.g. for IFAC=4
C(JT)=(cp,cy,05,c1%) with ¢y rCy real; for IFAC=5 g(J)=(c0,c1,c2,cz*,cl*) with

= real. Special coding is required for this case.

Each subsequent pass-through the outer loop accesses the next mj.q
entries of 5(1'1). For 0 < K < M/2, we have full complex transforms as in

the case of complex input data.

For K=M/2 (which will be invoked only if %; is even), the input vectors are
again real, but thiS'time'ﬁ(K) is not the identity matrix; in fact 5(M/2) =
diag(1, a, a%,...) where a=exp(-im/IFAC). The results have a "shifted"
conjugate symmetry, e.g. for IFAC=4‘E(J)=(c0,cl,c1*,co*); for

IFAC=5 C(J)=(cg,c3,Cp,C1*,cp*) with c; real. Further special coding is

required for this case.

For K > M/2 we again have full complex transforms, but the results are just

the complex conjugates of .the results already obtained for K'=M-K.

In specializing the routine to the case of real input data we adopt the
following strategy, which can be implemented by suitable modifications to the
indexing. First, zero imaginary parts will not be stored. Sgcondf only one
member of each complex conjugate pair is stored; if C(J)=C(I)* and J > I but
C(J) is computed first, then that result is conjugated and stored at the
location for C(I). This enables us to terminate the outer loop of the
subroutine PASS at K=M/2. As a consequence, only the first half of the TRIGS

array is ever used.

At each stage of the algorithm, some of the results will be real while others
are complex, and the storage pattern remains to be specified. BAn orderly and
convenient arrangement is to separate the real and imaginary parts of a

complex number in the vector E}i) of Eq.(7) by my locations.

The corresponding algorithm to compute x = Wyg with E'conjugate-symmetric
and x real (Fourier synthesis), can be obtained by "inverting" each operation

of the algorithm given above. This is exactly equivalent to an analogous
specialization of the decimation-in-frequency form of the complex FFT

algorithm applied to Eq.(1). 9

'

In both cases the vectors.ﬁ and g are naturally ordered, in contrast to. the
algorithms of Bergland [1,2]; .all necessary permutations are accomplished

internally by the indexing scheme of the subroutine PASS:

4. SMALL-n TRANSFORMS AND OPERATION COUNTS
In [8], algorithms were given for the "small-n" transforms x=W,z for 2<n<6.
For example, xW,z is given by

ti=2zgptzy; tr=z1+z3; t3=zg=zy; ty=z1~z3;

XSttty ; X =tgtit, s o=t -tyi xg=ta-it,. (8)

For x, z complex this requires 16 real additions.

In the Fourier analysis routine described above, corresponding algorithms are
required for transforms of the form x = Wn Zz. These are easily derived by
noting that Wn Z = Wpz' where z' is derived from 2z by reversing the order

of the components Zq to z,.q.- For example, x = ﬁq Z is-given by:

t1=z0+z2; t2=zl+z3; t3=zo—zz; t4=z§'z1;

o=ttty X =ty+it,; Xp=t;-t,; xg=ty-it, L ~ : (9)

The operation count is the same; in fact only one statement in (8) has to be

changed ‘to obtain (9).

Consider the case K=0 in the Fourier analysis routine; here we have to apply
(9) to real input data. The temporary results tl'tz't3'tu are all real;
x3=x1* and will not be stored, while % itself requires only an "apparent"
addition. In this case the algorithm X = WME requires only 6 real additions.
Corresponding operation counts for K=0 and various values of n are giveén in

Table I.

For the case K=0 in the corresponding Fourier synthesis routine, we have to

apply (8) to complex conjugate input data, i.e. z; and z, are real, while

zs=z1*. If we write

10

20=Yqi Z17Y*tiygs cz; = ypi Z3=yy-ivg

then the algorithm (8), expressed in terms of real numbers, becomes:

E1=Y¥+Yoi tp72¥1i t3¥¥oTYpi o t,72¥35

Besides 6 real additions, it appears that two doublings are required. Such
doublings can be omitted throughout the whole algorithm for x = Wyg if the
complex elements of ¢ are doubled before entry. Alternatively the real
elements (co and cy/y if N is even, ¢y only if N is odd) can be

halved before entry; the algorithm with the doublings omitted then computes x
= 1/2 Wyg. With this trick included, the operation counts for K=0 dﬁring

Fourier synthesis become the same as those during Fourier analysis.

Specializing the other small-n transforms given in [8] to - the case K=0 for
real Fourier analysis or synthesis is equally straightforward, and is left to

the interested reader.

As mentioned in the previous section, special transform algorithms are also
required for the case K=M/2, to compute x=0W, z or z = ﬁnﬁi where x is

real, z is "shifted conjugate-symmetric", and @ = diag(1, ¢, az,...) with
a=exp(im/n). These algorithms are given in the Appendix, and operation counts

for them are included in Table I.

We now consider total operation counts for a real/half-complex transform
x=Wy z where N is composite. For the complex case, formulae for the
operation counts were derived in [8], and it was noted that the counts are
independent of the order in which the factors are used. In the real/half-
complex case, there is a slight dependence on the order of the factors. The
operation counts can be derived by resorting to counting the number of trips

through the loops of subroutine PASS (for K=0, 0 < K < M/2 and K=M/2, for each
factor in turn) and using the results of Table I.

11

In Table II we present the operation counts for a selection of values of N,
both for a conventional real transform (ﬁsing the aléorithms of [3] together
with a complex transform of length N/2) and for the special real transform
described here. 1In the conventional case, allowed factors of N/2 are 2<n<6 as
in [8]. In the special case, a single factor n=8 is also allowed, and the
counts are for Fourier synthesis by decimation in frequency, using the factors
in ascending order, and ignoring any multiplications used for re—séaling
(Fourier analysis using the factors in descending order would give the same
operation counts). The single factor n=8 is allowed since with the factors
used in this way, only the simple: K=0 loop is invoked for n=8. ©N=256 is
factorized as 4% rather than 2.42.s since the latter gives a slightly higher

operation count.

Table II shows that use of the special real transform gives a reduction of
about 20% in the operation counts, the saving being slightly greater for

additions than for multiplications.

Bergland [1] quotes slightly lower operation counts for a radix-2 algorithm
than would be obtained using the counting procedure given here; ' this is
because he treats K=M/4 as a special case (the rotation angle in § is then
®/4). Also, he exploits the fact that no operations are required in the case
K=M/2 to reduce the number of passes for N=2P from p to (p-1). This trick

only works for the radix-2 algorithm.

5. IMPLEMENTATION ON CRAY-1 AND CYBER 205

The first réal/half—complex FFT package developed for use on the Cray-1 at
ECMWF was based on the procedures of [3] together with a complex FFT algorithm
as described in [8]. This was later superseded by a package using the special
real/half-complex algorithm described in this paper. BAs in [8], vectorization
was achieved simply by performing multiple transforms in parallel. Both

packages were written in Cray Assembly Language (CAL).

12

Table III shows the times per transform and megafiop fatestfor various values
of N, in the case of 64 transforms being.perférmed Qimultaneoﬁéiy-v The:
results include the time and operations required for rescaling. The new
packagé'achieves a 30% saving in CPU time over the old; as“discuéged in
Section 4 there is a 20% réduction in the operation éount, while tﬁe remaining
saving is a result of programming improvements. As a further measure of |
efficiency, in the new package the floating-point addition unit is busy for up

to 88% of the time.

A similar package has now been implemented on the Cyber 205 at the UK
Meteorological Office; some details are given in [7]. As discussed in [81,
the straightforward multiple approach to vectorization adopted on the Cray-1
is inadequate on the Cyber 205, which requires much longer vectors to reach
near-maximum efficiency. The solution outlined in [8] for the complex case,
based on interleaving the transforms and using Eq.(7) for decimation in
frequency or an analogous result [6] for decimation in time, carries over
directly to the real/half-complex case. Running on the two-pipe Cyber 205 in
32-bit mode, the real FFT package reaches speeds of almost 300 megaflops if

many transforms can be computed simultaneously [7].

The prime factor algorithms described in [9] can also be specialized to
real/half-complex transforms, but as in the complex case the potential gain
appears to be very modest on machines such as the Cray-1 and Cyber 205 where

multiplications can be performed in parallel with additions.

13

APPENDIX: SMALL-n TRANSFORMS FOR K=M/2

Here we set out the algorithms to compute x = QW 2- (Fourier synthesis) or

z =Wh§£ (Fourier analysis) where X is real, Z is "shifted conjugate

symmetric", and = diag(1,q, az,...) with o = exp(in/n). The algorithms are

expressed in terms of real arithmetic, and 2 is written in terms of real o

vectors as z=at+ib.

(a) Fourier synthesis

n=2§

n=6:

X Za ; x,=~b
o o© 1 o

1
X,= t. -5in60*b-; x_= =t _gin60%*b
o 2 1 o)

"t =sind45%(b +b_); t =gind5%(a -a_);
1 o 1 2 o 1

= - = — . =] - H = - -+
xo a°+a1, x1 t2 t1, x2 b1 bo x3 (t2 t1)

t=a+a.; t. = 1 to-a; t.= (Y5/4)*(a -a)i
o 3 o 1
t,= sin36*b +sin72*b_; t_=gin72*p ~sin36*b_;
. o 1 5 o 1°

4

t=t_-t_;

teTtytt,i BTt oty

xo=t1+a2; x1=t6—t4; x2=t7—t5; x3= -t7-t5; x4= -t6—t4
t,=a+a; t=b+b ; t.= sin60*(a -a2)i

. o .
5 11 6

= si * - . = —-a s = 1 +b
t = siné0 (bo bz), t ¥ t-a,; t) t2 b1,

= + . =f o . = - o
xo a1 t1, x1 t3 t6' x2 t5 t4,

= -t 3 ..-.;.— + H = - +
X = b -t x (t4 ts), Xg (t3 t6)

14

(b)

Fourier analysis

a =x ; b= -x
oo o 1
t1=x1—x2;
=y + . = - . '=—' *
a xo 1/2 t1, a1 xo t1, b° siné0 (x1+x2)

= i * - - =i * .
t1 sind5 (x1 x3), t2 sind5 (x1+x3),
= + . = - H I - = =
ao"x0 t1, a1—xo t1, bo x2 t2, b1—x
t=x -Xx ; t.=x +X ; = X _-X_; =
1 X =X ; 5 x1 x4, t3 x2 x3, t4
= — - = <+ -
t5 t1 t3, t6 xo 1/4 t5,
= + H = - . = - .
8o Tyt A4T TgTtyi A= x ot
b = ~-sin36*t_~sin72%*t ; b =
o 2 7 4

=a1 * - -
t_ =sin60 (x5 x1), t

2

sin60*(x2+x4);

15

t= (/5/4)*(t1+t3);

- *. + 3 %*
sin72 t2 sin36 t4

TABLE I

. Real operation counts (adds/mults) for X = Q(K)Wﬁ Z or X = ﬁhﬁ(K)E

n =0 0<K<M/2 K=M/2
2 2/0 6/4 _ 070
3 a/2 - 16/12 a2
4 6/0 22/12 6/2
5 12/6 40/28 12/6
6 14/4 46/28 12/4
8 20/2 66/32 ‘ 22/10
TABLE I1I

Real operation counts for a real transform of length N

N conventional special real
adds mults adds mults
180 2156 1104 1714 928
192 2076 832 1654 694
200 2446 1220 2004 1074
216 2552 1224 2020 1012
240 2896 1352 2364 1176
256 2876 1152 2286 942

16

TABLE III

Times per transform and .speeds for multiple real transforms on. Cray-1

N conventional special real

time (us) - megaflops . time. (us) megaflops

180 38.9 20 25.8 105
192 - 384 . 81 25.3 =100
200 . 408 - 94 :30.8 107
216 © 4405 21 5 0371.3 29
240 51.5 89 36.3 104
256 51.7 78 : 37.6° 95

17

REFERENCES

. G.D.BERGLAND, A Fast Fourier Transform Algorithm for ‘real-valued -series,

C.ACM 11 (1968), 703-710.

G.D.BERGLAND, A radix-eight Fast Fourier Transform subroutine for real-

valued series, IEEE Trans.Audio and Electroacoustics 17 (1969), 138-143.
J.W.COOLEY, P.A.W.LEWIS AND ‘P.D.WELCH, The Fast Fourier Transform
algorithm: programming considerations in the calculation of sine, cosine

and Laplace transforms, J.Sound Vib. 12 (1970), 315-337.

J.W.COOLEY AND J.W.TUKEY, An algorithm for the machine calculation of

complex Fourier series, Math.Comp. 19 (1965), 297-301.

W.M. GENTLEMAN AND G.SANDE,Fast Fourier Transforms - for fun and profit,

Proc.AFIPS Joint Computer Conference 29 (1966), 563-578.

D.G.KORN AND J.J.LAMBIOTTE, Computing the Fast Fourier Transform on a

vector computer, Math.Comp. 33 (1979), 977-992.

C.TEMPERTON, Fast real Fourier transforms on the Cyber 205, Met.0.11

Technical Note No.155, Meteorological Office, U.XK., 1982.

C.TEMPERTON, Self-sorting mixed-radix Fast Fourier Transforms, submitted

to J.Computational Phys.

C.TEMPERTON, A note on prime factor FFT algorithms, submitted to

J.Computational Phys.

18

